

KEFI MINERALS TULU KAPI GOLD PROJECT STUDY UPDATE

1953-000-GEREP-0001

May 2017

File Location: 17.04 Rev. C

С	23.05.17	ISSUED FOR REVIEW	RA	pp MW	PA
В	04.05.17	ISSUED FOR REVIEW	PH	pp MW	PH
A	03.05.17	ISSUED FOR REVIEW	PH	pp MW	PH
REV NO.	DATE	DESCRIPTION OF REVISION	ВҮ	DESIGN APPROVED	PROJECT APPROVED

Lycopodium Minerals Pty Ltd. ABN: 34 055 880 209, Level 5. 1 Adelaide Terrace, East Perth, Western Australia 6004

TULU KAPI GOLD PROJECT STUDY UPDATE 1953-000-GEREP-0001

DISCLAIMER			Page I
1.0	EXECU	JTIVE SUMMARY	1
2.0	INTRO 2.1 2.2 2.3 2.4	DUCTIONProject LocationProject DescriptionProject HistoryOverview of Project Refinements Following DFS2.4.1Contract Mining2.4.2Processing Plant Capacity Increase2.4.3Further Upside Potential	5 5 9 10 11 11
3.0	GEOLO 3.1 3.2 3.3 3.4	OGY MINERALISATION AND EXPLORATION Introduction Mineral Resource Estimates Mineral Resource Ore Reserve Estimate	12 12 12 13 15
4.0	MINING	G	19
	4.1	Introduction	19
	4.2	Basis of Mine Design 4.2.1 Design Parameters 4.2.2 Pre-Mining Construction	19 19 19
	4.3	Pit Design and Refinements to Mine Schedule 4.3.1 Re-sequencing Stage 1 Pit Development 4.3.2 Increased Mining Rate	21 21 27
	4.4	Revised Mining Schedule	28
	4.5	Waste Dump Design 4.5.1 Overall Layout 4.5.2 Risks and Opportunities	32 32 33
	4.6	Mining Methods 4.6.1 Mining Techniques 4.6.2 Drill and Blast	34 34 36
	4.7	Contract Mining Strategy 4.7.1 Contract Scope Optimisation 4.7.2 Scope of Services Summary	41 41 42
	4.8	Mining Operations4.8.1Equipment Selection4.8.2Grade Control Drilling4.8.3Light Vehicles4.8.4Explosives Supply4.8.5Pit Dewatering and Drainage	43 43 44 45 47 47
	4.9	Mining Personnel 4.9.1 Owner's Mining Department Personnel 4.9.2 Contract Mining Personnel 4.9.3 Explosives Contract Mining Personnel	47 47 50 50
	4.10	Mining Operating Cost4.10.1Basis of Estimate Mine Operating Cost4.10.2Mine Owner's Labour Costs4.10.3Mining Overhead4.10.4Contractor Costs	52 52 53 56 56

TULU KAPI GOLD PROJECT

STUDY UPDATE

1953-000-GEREP-0001

5.0	META 5.1 5.2 5.3	ALLURGICAL TESTWORK Introduction Variability Testwork and Grind Size Optimisation Refinements to the Recovery Model Optimisation of Grinding Circuit Configuration	Page 58 58 59 62 67
60			69
0.0	6 1	Process Design	69 69
	0.1	6 1 1 Design Philosophy	69
		6.1.2 Selected Process Flowsheet	70
		6.1.3 Plant Design Basis	71
		6.1.4 Selected Comminution Circuit	72
	6.2	Process and Plant Description	74
		6.2.1 Run-of-Mine (ROM) Pad	75
		6.2.2 Crushing Circuit	75
		6.2.3 Ore Storage and Reclaim	75
		6.2.4 Grinding and Classification Circuit	76 77
		6.2.5 Eleach and Caldroom Operations	78
		6.2.7 Cvanide Destruction	80
		6.2.8 Tails Disposal	80
		6.2.9 Decant Return	81
		6.2.10 Reagents	81
		6.2.11 Services	83
	6.3	Metallurgical Accounting	84
	6.4	Process Design Criteria	85
	6.5	Mechanical Equipment List	85
	6.6	Process Flow Diagrams (PFDs)	85
	0.7 6 9	Electrical Load List	85
	6.9	Process Flow Diagrams	86
7.0	TAILII	NGS STORAGE FACILITY AND WATER DAMS	87
	7.1	Introduction	87
	7.2	Design Criteria and Objectives	87
		7.2.1 Design Objectives	87
	7.3	Design Criteria	88
		7.3.1 Consequence Category	88
	7.4	Climate Data	88
		7.4.1 I emperature	88
		7.4.2 WINU 7.4.3 Painfall and Evanoration Data	89
		7.4.3 Raiman and Evaporation Data 7.4.4 Storm Data	90 Q1
	75	Geotechnical Conditions	92
	7.6	Tailings Characteristics	92
	-	7.6.1 Physical Characteristics	92
		7.6.2 Geochemical Characteristics	93
	7.7	Tailings Storage Facility Design	93
		7.7.1 Site Selection	93
		7.7.2 General Description	93
		7.7.3 Embankment Construction	94
		7.7.4 Seepage Control	94

TULU KAPI GOLD PROJECT

STUDY UPDATE

1953-000-GEREP-0001

		 7.7.5 Decant System 7.7.6 Emergency Spillway 7.7.7 Tailings Deposition 7.7.8 Stability 7.7.9 Dam Break 7.740 Observed Debability time 	Page 95 95 96 96 96
	7.8	Water Management	97 97
	7.9	 7.8.1 General TSF Water Balance 7.9.1 Catchment Diversion 7.9.2 Water Balance – Average Conditions 7.9.3 Water Balance – 1 in 100 Wet Year 	97 97 97 98 98
	7.10	 Water Storage and Diversion 7.10.1 Water Diversion 7.10.2 Water Dams 7.10.3 Diversion Channels 7.10.4 Water Supply 	98 98 99 99 99
	7.11 7.12 7.13	Sediment Control External Water Sources Design	100 100 100
8.0	OFFSIT 8.1 8.2	E INFRASTRUCTURE Introduction Offsite Roads 8.2.1 Main Access Road Optimised Design 8.2.2 Southern Bypass Road Optimised Design 8.2.3 Northern Bypass Road Optimised Design Airstrip	101 104 104 105 105 105
	8.4	Grid Power Supply	106
9.0	ENVIRC 9.1 9.2 9.3	ONMENTAL AND SOCIAL IMPACT ASSESSMENT Introduction Resettlement Action Plan (RAP) Environmental Management Plan	107 107 107 108
10.0	PERMI 10.1	TING Introduction 10.1.1 Ancillary Licences and Authorisations	110 110 110
11.0	CAPITA 11.1 11.2	L COST ESTIMATE Capital Cost Introduction General Estimating Methodology 11.2.1 Summary 11.2.2 Potential Capital Cost Tax Implications	113 113 113 113 113 114
	11.3 11.4 11.5	Capital Costs Exclusions Capital Cost Accuracy Process Plant Capital Cost Estimate 11.5.1 Process Plant Capital Cost Summary 11.5.2 Basis of Estimate and Assumptions for Processing Plant	115 116 117 117
		Capital Cost 11.5.3 Estimate Parameters 11.5.4 Exchange Rates	118 120 120

TULU KAPI GOLD PROJECT

STUDY UPDATE

1953-000-GEREP-0001

			Page
		11.5.5 Sources of Estimate Information	121
		11.5.6 Quantity Development	123
		11.5.7 Pricing Basis	123
		11.5.8 Supply	124
		11.5.9 Field Indirects	124
		11.5.10 Owner's Costs	125
	11.6	Onsite Infrastructure Capital Cost Estimate	126
		11.6.1 Onsite Infrastructure Capital Cost Summary	126
	11.7	Mining Capital Cost Estimate	127
		11.7.1 Basis of Estimate and Assumptions for Mine Capital Cost	127
		11.7.2 Mining Infrastructure Capital Cost	128
		11.7.3 Mining Equipment	129
		11.7.4 Light Vehicles	129
		11.7.5 Mining Contractor Infrastructure	130
		11.7.6 Mining Equipment Refuelling Facility	130
		11.7.7 Mining Contractor Mobilisation	131
		11.7.8 Pre-production and Pre-strip Capital Cost	131
		11.7.9 Pil Dewalering Capital Cost Allowance	131
		11.7.10 Explosives Supply Capital Cost Allowance	102
		11.7.11 Mobile Crushing Flam	132
		11.7.12 Owner's realing 11.7.13 Mining Sustaining Capital	132
		11.7.10 Process Plant Indirect Costs	132
		11.7.15 Process Operational and Insurance Spares	134
		11.7.16 Insurance134	104
	11.8	Offsite Infrastructure Capital Cost Estimate	135
	11.0	11.8.1 Offsite Infrastructure Capital Cost Summary	135
		11.8.2 Overhead Power Lines Capital Cost	135
		11.8.3 Access Roads Outside the Mining Concession Capital Cost	136
	11.9	Owner's Costs and Working Capital	136
		11.9.1 Owner's Cost	136
		11.9.2 Relocation and Resettlement Updated Capital Cost Estimate	
		Summary	138
		11.9.3 Environmental Management Capital Cost Estimate	140
		11.9.4 Contingency	141
		11.9.5 Closure Cost Estimate	141
12.0	PLANT	AND ADMINISTRATION OPERATING COSTS	142
	12.1	Introduction	142
	12.2	LOM Operating Cost Summary	142
	12.3	General Overheads – KEFI Scope	142
	12.4	Processing Operating Cost Summary	144
		12.4.2 Power	148
		12.4.3 Operating Consumables	149
		12.4.4 Maintenance Materials Costs	150
		12.4.5 Labour	150
		12.4.6 Laboratory Costs	151
		12.4.7 Services and Utilities	152
		12.4.8 Processing Preproduction and Working Capital Costs	152
13.0	PROJE	CT IMPLEMENTATION SCHEDULE	154
	13.1	Basis	154

TULU KAPI GOLD PROJECT STUDY UPDATE 1953-000-GEREP-0001

Table 1.1Summary of Costs3Table 1.2LOM Operating Cost Estimate Summary (US\$, 1Q17, ±15%)4Table 3.1January 2015 Tulu Kapi Mineral Resource Estimate Reported Above a 0.45g/t Au Cut-off and 2.5g/t Au Cut-off13Table 3.2January 2015 Tulu Kapi Mineral Resource Estimate Reported at Various Cut-off Grades14Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/t Au Cut-off Grade15Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
Table 1.2LOM Operating Cost Estimate Summary (US\$, 1Q17, ±15%)4Table 3.1January 2015 Tulu Kapi Mineral Resource Estimate Reported Above a 0.45g/t Au Cut-off and 2.5g/t Au Cut-off13Table 3.2January 2015 Tulu Kapi Mineral Resource Estimate Reported at Various Cut-off Grades14Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/t Au Cut-off Grade15Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
Table 3.1January 2015 Tulu Kapi Mineral Resource Estimate Reported Above a 0.45g/t Au Cut-off and 2.5g/t Au Cut-off13Table 3.2January 2015 Tulu Kapi Mineral Resource Estimate Reported at Various Cut-off Grades14Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/t Au Cut-off Grade15Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
0.45g/t Au Cut-off and 2.5g/t Au Cut-off13Table 3.2January 2015 Tulu Kapi Mineral Resource Estimate Reported at Various Cut-off Grades14Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/t Au Cut-off Grade15Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
Table 3.2January 2015 Tulu Kapi Mineral Resource Estimate Reported at Various Cut-off Grades14Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/t Au Cut-off Grade15Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
Various Cut-off Grades14Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/t15Au Cut-off Grade15Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/tAu Cut-off Grade15Table 4.1Stages Vertical AdvanceTable 4.2Tulu Kapi Mining Schedule
Au Cut-off Grade15Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
Table 4.1Stages Vertical Advance24Table 4.2Tulu Kapi Mining Schedule29
Table 4.2 Tulu Kapi Mining Schedule 29
Table 4.3Tulu Kapi Stockpiling Schedule30
Table 4.4 Tulu Kapi Processing Schedule 31
Table 4.5Comparison Cost of 114 mm and 127 mm Diameter Blast Holes36
Table 4.6Fracture Frequency Distribution Estimated within Main Pit37
Table 4.7 Estimated Average In Situ Block Size for Each Rock Type 38
Table 4.8 Drill and Blast Parameters Applied To Fresh Rock in 2015
Optimisation 39
Table 4.9Excavator Tasks by Machine Size43
Table 4.10Light Vehicle Provision45
Table 4.11Summary of Contractor Mining Fleet46
Table 4.12Owners Labour Schedule48
Table 4.13 Mining Contractor Labour Schedule 50
I able 4.14 Explosives Contractor Labour Schedule 51
Table 4.15Mine Operating Cost Summary53
Table 4.16 Mine Labour Cost Breakdown 55
Table 5.1 Oxide Ore Au and Ag Variability Results at 150 µm 59
Table 5.2 Soft Fresh Ore Au and Ag Variability Results at 150 µm 60
I able 5.3Hard Fresh Ore Au and Ag Variability Results at 150 μm60
Table 5.4 Au Solids Tall Grade Comparison for Oxide Ore 61 Table 5.5 Au Solids Tall Grade Comparison for Oxide Ore 61
Table 5.5 Au Solids Tails Grade Comparison for Soft Fresh Ore 61
Table 5.6 Au Solids Tall Grade Comparison for Harder Fresh Ore 62
Table 5.7 Average Gold Recovery for Different Ore Types Based on the LOW
Schedule 07
Table 6.1 Summary of Comminution indices and Selected Mining Circuit Design 75
Table 7.1 Wontilly Raillall and Evaporation Data 91
Table 7.2 Storin Events (IIIII of Rainall) 91
Table 7.5 Embalikment Staying 94
Table 7.4 Maximum Calcilment for Water Negative Water Datance 97
Table 7.5 Water Datits 99
Table 7.0 Dole input hows 100
Table 10.1 Fermining Requirements 111
Table 11.2 Capital Cost Estimate Summary - April 2017 114
Table 11.2 Capital Cost Estimate Summary - April 2017 114
Table 11.4 Process Plant Initial Capital Cost Summary 117
Table 11.5 Rate of Exchange Applied Cost Odminary 117
Table 11.6 Source of Estimate Information 121
Table 11.7 Site Infrastructure and Bulk Earthworks Costs Summary 126
Table 11.8 Site Infrastructure and Bulk Earthworks Contingency Considerations 127

TULU KAPI GOLD PROJECT STUDY UPDATE

1953-000-GEREP-0001

		Page		
Table 11.9	Mining Capital Cost Estimate Summary	128		
Table 11.10	Mining Equipment Cost Estimate			
Table 11.11	Light Vehicle Cost			
Table 11.12	Process Plant Indirect Costs	133		
Table 11.13	Process Plant Operational and Insurance Spares	134		
Table 11.14	Offsite Infrastructure Costs	135		
Table 11.15	Owner's Costs	137		
Table 11.16	Relocation and Resettlement Summary and Variance from 2015 DFS	138		
Table 11.17	Relocation and Resettlement Cost Breakdown	139		
Table 11.18	Environmental Management Costs	140		
Table 11.19	Contingency Allocation	141		
Table 11.20	Closure Costs	141		
Table 12.1	LOM Operating Cost Estimate Summary (US\$, 1Q17, ±15%)	142		
Table 12.2	Processing Operating Cost Estimate Summary (US\$, 1Q17, ±15%)	147		
Table 12.3	Processing Power Cost Summary (US\$, 1Q17, ±15%)	148		
Table 12.4	Processing Operating Consumables Cost Summary (US\$, 1Q17,			
	±15%)	149		
Table 12.5	Process Plant Personnel and Annual Cost (US\$, 1Q17, ±15%)	151		
FIGURES				
Figure 2.1	Tulu Kapi Project Location	6		
Figure 2.2	Tulu Kapi Mining Licence Area	8		
Figure 4.1	Pre-Mining Works 2015 DFS	19		
Figure 4.2	Pre-Mining Works Study Update	20		
Figure 4.3	Original Stage 1 Design	22		
Figure 4.4	Original Stage 1 Design with Whittle Shell 10 (red)	23		
Figure 4.5	Original Stage 1 Design (green) with Stage 1A (blue).	24		
Figure 4.6	Comparison Between Snowden DFS to Updated Schedule of			
_	Throughput Tonnes	25		
Figure 4.7	Comparison Between Snowden DFS to Updated Schedule of			
	Throughput Grade	26		
Figure 4.8	Comparison Between Snowden DFS to Updated Schedule of			
	Recovered Ounces'	26		
Figure 4.9	Stage 2 Dimensions (dark) Showing Ore and Waste on 1,715 mRL	07		
E '	Bench	27		
Figure 4.10	Total Movement Comparison	28		
Figure 4.11	Final Surface at Completion of Mining Operations	32		
Figure 4.12	Northwest Waste Dump Concept	33		
Figure 4.13	Owners mining Department Organisational Structure	49		
Figure 4.14	Distribution of Mine Operating Costs	52		

Figure 4.14	Distribution of Mine Operating Costs	52
Figure 5.1	A14207 – Oxide Ore - Testwork Head Grade vs Residue Grades	63
Figure 5.2	A14207 – Testwork Gold Dissolution vs Predicted Dissolution – Oxide	
-	Ore	64
Figure 5.3	A14136 Fresh Ore - Testwork Head Grade vs Residue Grades	64
Figure 5.4	A14136 Testwork Head Grade vs Gold Dissolution	65
Figure 5.5	A14136 Testwork Head Grade vs Gold Dissolution – Grouped	65
Figure 5.6	A14136 Testwork Gold Dissolution vs Predicted Dissolution - Fresh	
-	Ore	66
Figure 5.7	Original 'Hardness'	68
Figure 5.8	Updated 'Hardness' Model	68
Figure 6.1	Simplified Process Flowsheet	86

TULU KAPI GOLD PROJECT STUDY UPDATE 1953-000-GEREP-0001

Table of Contents

		Page
Figure 7.1	Mean Monthly Minimum, Maximum and Average Temperature	89
Figure 7.2	Average Daily Minimum, Maximum and Average Temperature	89
Figure 7.3	Wind Rose and Wind Frequency Distribution for the Tulu Kapi Site	90
Figure 8.1	Mine Licence Area and Offsite Infrastructure	103
Figure 8.2	Tulu Kapi Gold Project Airstrip Location	106

APPENDICES

Appendix 6.1	Process Design Criteria
Appendix 6.2	Equipment List
Appendix 6.3	Process Flow Diagrams (PFDs)
Appendix 6.4	Electrical Load List
Appendix 6.5	Site General Layout
Appendix 6.6	Mill Sizing
Appendix 7.1	TSF and Water Dam - Figures
Appendix 7.2	TSF and Water Dam - Design
Appendix 12.1	Processing Operating Cost Estimate Detail
Appendix 13.1	Preliminary Baseline Schedule – Critical Path

Appendix 13.2 Preliminary Baseline Schedule

DISCLAIMER

This report has been prepared for KEFI MINERALS (KEFI) by Lycopodium Minerals Pty Ltd (Lycopodium) as an independent consultant and is based in part on information provided by Lycopodium, in part by Knight Piésold, the consultant for the TSF and Water Dam, and on information furnished by KEFI. While it is believed that the information, conclusions and recommendations will be reliable under the conditions and subject to the limitations set forward herein, Lycopodium does not guarantee their accuracy. The use of this report and the information contained herein shall be at the user's sole risk, regardless of any fault or negligence of Lycopodium.

Division of Responsibility

	Section	Input Responsibility
1.0	Executive Summary	Lycopodium
2.0	Introduction	KEFI
3.0	Geology Mineralisation and Exploration	KEFI
4.0	Mining	KEFI & Mining and Cost Engineering Pty Ltd (MACE) –based on contract mining proposal
5.0	Metallurgical Testwork	KEFI
6.0	Process Plant Design	Lycopodium
7.0	Tailings Storage Facility and Raw Water Diversion Dam	Knight Piésold for Lycopodium
8.0	Offsite Infrastructure	KEFI
9.0	Environmental and Social Impact Assessment	KEFI
10.0	Permitting	KEFI
11.0	Capital Cost Estimate	
	EPC Process Plant including Mine Accommodation Camp	Lycopodium
	Onsite Infrastructure	Lycopodium
	Bulk Earthworks (Plant, Village, Lease Roads) Capital Cost	Lycopodium
	Process Plant and Administration	Lycopodium
	Tailings Storage Facility	Lycopodium
	Raw Water Diversion Dam	Lycopodium
	Process Operational and Insurance Spares	Lycopodium
	Mining Capital Costs	KEFI and MACE
	Owners Capital Cost	KEFI
	Other Capital Costs	KEFI
12.0	Operating Costs Estimate	
	Processing Operating Cost Summary	Lycopodium (KEFI supplied rates)
	General and Administration Operating Cost	KEFI
	Mine site Access Road	KEFI
	Corporate Management Fee	KEFI
	TSF Operating Cost Estimate	KEFI
13.0	Implementation	Lycopodium

LIST OF ABBREVIATIONS USED IN THIS DOCUMENT

KEFI Minerals	KEFI
Lycopodium Minerals Pty Ltd	Lycopodium / Consultant
Australian Dollars	AUD
Capital Expenditure	CAPEX
Carbon In Leach	CIL
Definitive Feasibility Study	DFS
Engineering, Procurement and Construction	EPC
Euro	EUR
Front End Engineering and Design	FEED
Life Of Mine	LOM
Megawatt	MW
Micron	μm
Occupational Health and Safety	OH&S
Operating Expenditure	OPEX
Orway Mineral Consultants Pty Ltd	OMC
Semi-Autogenous Grinding	SAG
Tailings Storage Facility	TSF
Tulu Kapi	ТК
United States Dollars	USD
Mining and Cost Engineering Pty Ltd	MACE

1.0 EXECUTIVE SUMMARY

This report has been compiled by Lycopodium Minerals Pty Ltd following the FEED scope undertaken by Lycopodium in late 2016 and as an update to the 2015 DFS report prepared by Senet. During the FEED period a number of initiatives were incorporated into the design to improve the robustness of the project. This report provides revised capital and operating costs for the project based on the Lycopodium FEED design and the development by Knight Piésold, as consultant to Lycopodium, of the conceptual design provided by KEFI Minerals for the Tailings Storage Facility (TSF) and Water Dams.

The key initiatives incorporated into this update are as follows:

- Mine operations to be undertaken by an experienced African mining contractor.
- Process plant capacity increased from 1.2 Mtpa to 1.5 Mtpa to treat lower grade stockpile ore earlier in the mine life.
- Target grind for processing plant increased to P₈₀ = 150 μm.
- Processing plant comminution circuit refined and primary SAG mill and secondary Ball mill circuit replaced with larger SAG only circuit.
- Tailings Storage Facility (TSF) relocated downstream to reduce capital cost with no reduction in capacity for a neutral water balance.
- Main access road routes were refined to decrease capital costs.

For the purposes of this report the Geology, Mineralisation and Exploration approach remains as per the 2015 DFS. The information provided has been applied as is by Lycopodium in the development of the design and the plant capital and operating costs.

Subsequent to the 2015 DFS, the approach to mining operations has been reviewed by KEFI with a view to improving cash flows and achieving cost reductions where possible. The key initiatives incorporated are as follows:

- Mine operations to be undertaken by an experienced African mining contractor rather than the Owner.
- Rationalisation of pre-mining works to be undertaken by a separate earthmoving contractor during the construction period.
- Improve mining operations in consultation with the preferred mining contractor.
- Mill throughput was increased from 1.2 Mtpa to 1.5 Mtpa for normal operations and 1.7 Mtpa when processing softer ores.

The metallurgical testwork data remains as per that available and provided as part of the 2015 DFS. As part of the FEED, Lycopodium undertook a review of past metallurgical testwork samples,

as well as the supervision and confirmation of comminution circuit design based on the different ore blends to be treated during the open pit Life of Mine (LOM) operations. The significant outcomes of this review are:

- The ability to increase the plant capacity from 1.2 Mtpa to 1.5 Mtpa.
- Increase the grind size from P_{80} = 75 µm to 150 µm for the fresh ore and 125 µm for the oxide ore, with only minor loss in gold recovery.
- Single stage SAG mill in place of the Ball and SAG mill in the 2015 DFS design.

The Lycopodium plant design is predicated on a name plate throughput of 1.5 - 1.7 Mtpa which is consistent with the performance warranty proposed in the EPC contract. Given the plant will initially be treating softer oxide ore and in a new state requiring reduced maintenance, an opportunity exists to operate the plant into the design margin and achieve 10% increase above nameplate. KEFI has highlighted the importance of avoiding the unnecessary build-up of ore stockpiles by running the plant below its capacity. If the plant is operated at 1.5 - 1.7 Mtpa, ore stocks will build requiring two additional years of processing following the conclusion of mining operations. In consideration of these opportunities, it is the reasonable intention of KEFI to finance for the Lycopodium design of 1.5 - 1.7 Mtpa, whilst planning their production at 10% higher annual throughput.

In addition to the key improvements already noted, further design development undertaken during the FEED period resulted in the following improvements:

- Replacement of the live coarse ore stockpile and reclaim feeders with a surge bin and 'dead' stockpile. The SAG mill feed will be withdrawn directly from the surge bin.
- The elution circuit capacity increases from 4 t to 6 t with the higher throughput.
- Quicklime dosed via the mill feed conveyor will be used in place of a hydrated lime system with wet make-up and distribution network.
- Removal of tower crane and inclusion of gantry crane arrangement.
- Relocation of administration and mine buildings.

Subsequent to the 2015 DFS and the design provided by Epoch Resources for the Tailing Storage Facility (TSF) and the Water Dams, further conceptual review and optimisation was undertaken by KEFI, via their consultant Increva Pty Ltd. As part of the scope of this update, Lycopodium engaged the services of Knight Piésold to develop the revised concept provided by KEFI and provide quantities for estimating purposes. The key outcomes of this review are as follows:

- TSF with 9 stages. Stage 1 being for 1.5 Mtpa and 1 year of operation. Stages 2 to 9 constructed by the KEFI mining contractor.
- 2 Water Dams, 0.58 and 0.332 Mm³, to capture and provide water for the process plant and administration facilities.

Consideration of the timing of construction and the rainy seasons in the area will be required upon progression into the execution phase of the project. There are residual risks that remain in relation to the design of the TSF and Water Dam, namely:

- Although a review of the ground conditions encountered at the proposed TSF and WD embankments show competent foundations for the facility embankments, further geotechnical information will need to be gathered during the execution phase prior to the detailed design to confirm the ground conditions.
- Timely construction of the water catchment dams to capture two rainy seasons for startup operations as per the current baseline plan.

The offsite infrastructure, environmental and social impact, and permitting, remain unchanged from the 2015 DFS for the purposes of this update.

The initial capital investment value for the Tulu Kapi project, excluding taxes, is US\$161,243,432. Below is a summary of costs.

Description	Initial Capital US\$	Sustaining Capital US\$	Total Capital US\$
EPC Total Price	69,424,841		69,424,841
EPC Adjustment resulting from scope change	1,472,515		1,472,515
Revised EPC Value	70,897,356		70,897,356
EPCM Scope of Works			0
Bulk Earthworks	14,582,574	10,506,045	25,088,619
Other Allowances	970,000		970,000
Contingency	3,110,515	2,101,209	5,211,724
First Fill and Spares	4,337,446		4,337,446
Mining Cost	15,823,000	1,097,000	16,920,000
Offsite Infrastructure Cost	15,671,000	473,000	16,144,000
Owners Cost	18,111,986		18,111,986
Other Cost	17,739,555	830,000	18,569,555
Closure Provision		9,483,393	9,483,393
Total	161,243,432	24,490,647	185,734,079

Table 1.1	Summary	of	Costs
-----------	---------	----	-------

Further consideration as to the impact of taxes imposed on the project by an appropriately qualified tax advisor is ongoing by KEFI Minerals.

The operating costs have been updated to reflect the initiatives that have been adopted following the 2015 DFS. The Mining and General and Administration costs have been updated by KEFI, with

the process operating costs provided by Lycopodium utilising operating and consumable costs provided by KEFI.

The LOM operating cost estimate is summarised Table 1.2 in operating costs are exclusive of taxes, selling and royalty's costs.

Cost Centre	Total LOM Cost			
LOM Plant Feed 15.4 Mt	Mt US\$M US\$/t Plan			
Mining	441	28.64		
Processing	133	8.67		
General & Administration	88	5.69		
Total	662	43.00		

Table 1.2LOM Operating Cost Estimate Summary (US\$, 1Q17, ±15%)

The implementation schedule produced during the FEED has been updated and included in this report for completeness. The overall project duration is approximately 30 months with a six month early works programme and 24 months duration for the main portion of the EPC. The schedule currently shows a first gold pour late in Q4 of 2019, dependent upon activities undertaken subsequent to this report.

At the time of preparation of this report, KEFI has commenced some of the schedule activities assumed in this report such as the recommended geotechnical investigation. In addition, KEFI have advised that based on the current site activities and the schedule being targeted by KEFI, the resettlement of the community should be three months earlier than that assumed herein. Further opportunities of schedule improvement, such as rationalisation and programming of bulk earthworks, may also be recognised as a result these early works

Subject to ongoing review and progress during the remainder of 2017, the schedule for mobilisation, construction and subsequent gold pour, it may be possible to recognise an improvement to the current baseline schedule of approximately three months.

2.0 INTRODUCTION

KEFI Minerals PLC ('KEFI') is a gold exploration and development company listed on the AIM Market of the London Stock Exchange (AIM:KEFI.L) focused on the exploration and concurrent development of the Tulu Kapi Gold Project in Western Ethiopia.

The Tulu Kapi Mine Licence was granted for 20 years in April 2015.

Since acquisition of the project, KEFI have tightened up the geological interpretation and mine planning and completed a revised DFS in June 2015 (the '2015 DFS') to re-evaluate the technical and economic characteristics of the Tulu Kapi Gold Project carried out by the previous owners Nyota Minerals Limited.

Subsequent to the positive 2015 DFS commissioned by KEFI, Lycopodium Pty Ltd was appointed as the nominated EPC contractor in 2016. During this period a number of additional initiatives have been undertaken to further improve the robustness of the project and introduce both improved cash flows and cost reductions.

This report outlines those initiatives and the subsequent refinements to the project costs. This report should be read in conjunction with the 2015 DFS.

2.1 **Project Location**

The Tulu Kapi Gold Project is located in Western Ethiopia, in the Western Wellega Zone of the Oromia Region approximately 360 km due west of the capital, Addis Ababa. The Project is accessible by road from Addis Ababa, a distance of 520 km with the final 15 km by means of an all-weather unpaved road running through the surrounding villages. The journey by road from Addis Ababa to Tulu Kapi takes approximately 10 hours.

The project area is approximately 9 km south of the village of Kelley, which is on the main road from Gimbi to Dembi Dollo. Regional population centres within easy road travel distance of the licence areas include Ayra, a small town about 20 km to the west, Gimbi, an important market town about 32 km to the east northeast, and Nekemte, a larger regional centre about 110 km to the east.

Chartered aircraft from Addis Ababa may land at an airstrip at Ayra Guliso, approximately 30 km by road from the project. Road travel from Ayra to the project site takes approximately 2 hours on a mix of gravel and dirt roads. Ethiopian Airlines operate scheduled flights three times a week to Assosa airport, a 4-hour drive from Tulu Kapi.

The project location area is shown as red in Figure 2.1.

2.2 Project Description

The 7 km² Mining Licence Area is located in the Oromia National Regional State, Western Wellega Zone, Genji Woreda (Kapi Guracho and Bikiltu Ankore Kebele).

The project area is characterised by rounded hills and deeply incised valleys at elevations of between 1,550 and 1,770 metres above mean sea level.

The project site is located on a ridge forming a watershed which drains north and south. Drainage to the north is towards the Gurach and Kersa Rivers, which are sub-tributaries of the Birbir River. Drainage to the south is via the Chalte, Kumbo and Sarere rivers, which are sub-tributaries of the Baro and Blue Nile Rivers. The streams in the area are perennial but decrease to very low flow rates in the dry season. Groundwater in the project area is found in two aquifers. The upper unconfined aquifer is located in the saprolite, and the lower semi-confined aquifer is located deeper in the fractured bedrock. Groundwater flow is expected to mimic the surface topography and be controlled by surface water divides.

Land use is predominantly agricultural and the ridges are mainly left to grass for cattle. The hill sides are terraced for seasonal cropping of maize, teff, corn, and other staples. The incised valleys are overprinted by a forest ecosystem providing shade for coffee plantations.

Rainfall is seasonal with a pronounced 'monsoon' period between July and September. Daily average high and low temperatures range from 32°C and 13°C in May immediately prior to the start of the rainy season, to 24°C and 14°C in July and August, which are the coldest months.

KEFI has been able to continue uninterrupted exploration throughout the year, including reduced activity during the wet season, and based on evidence to date there appears to be no reason why a commercial scale mining and processing operation cannot be conducted throughout the year.

The gold mineralisation at Tulu Kapi is hosted by an Upper Proterozoic age intrusive, which comprises a coarse-grained syenite pluton. These rocks have been intruded into a volcano-sedimentary sequence that was subsequently transformed to mafic and sericitic schists. The main Tulu Kapi deposit comprises a series of stacked gold-bearing quartz-carbonate veins, veinlets and stock work intimately associated with sub-horizontally dipping albite alteration zones.

Figure 2.2 shows the mining licence area for the Tulu Kapi Gold Project overlaid on an aerial photograph.

2.3 Project History

Small-scale surface mining took place at Tulu Kapi in the 1930s, focussing on easily accessible gold-bearing saprolite on the flanks of the Tulu Kapi deposit. The total volume of material mined was modest and has had little or no impact on the project resource or future mining plans and there has been no history of persistent artisanal mining.

The earliest modern exploration of the Tulu Kapi area took place in the 1970s under the guidance of the United Nations Development Programme (UNDP), which undertook reconnaissance exploration over a wide area of western Ethiopia between 1969 and 1972. The work was largely reconnaissance level and regionally biased and included stream sediment and soil geochemical sampling, geophysical surveys, detailed geological mapping and diamond drilling.

Tan Range Exploration Company (TREC), a Canadian exploration company, acquired an exploration licence over an area that incorporated the Tulu Kapi deposit and undertook further exploration between 1996 and 1998, including a small amount of drilling.

The Tulu Kapi Licence was granted to Minerva Resources through its wholly owned subsidiary Golden Prospect Mining Company (GPMC) on 27 May 2005. GPMC undertook further detailed geological mapping, trenching, and geophysics and completed 34 diamond drill holes.

Minerva Resources (GPMC's parent company) was acquired by Dwyka Resources Limited (whose name was subsequently changed to Nyota Minerals Limited) in July 2009. GPMC therefore became a wholly owned subsidiary of Nyota.

Between July 2009 and September 2011, Nyota undertook an aggressive exploration and evaluation programme, which has been summarised by independent geological and mining consultants in several JORC-compliant mineral resource estimates and an NI 43-101 PEA.

Further extensive exploration and drilling allowed Nyota to complete an initial Definitive Feasibility Study in December 2012 ('2012 DFS') based on a 107 koz annual production scenario with a 2 Mtpa conventional CIL processing plant and initial capital expenditure (excluding working capital) totalling US\$235 million.

KEFI Minerals Plc acquired 75% of the share capital of Nyota Minerals (Ethiopia) Ltd (NME), the owner of the Tulu Kapi Project and surrounding exploration licences, in December 2013. NME underwent a name change in 2014 to KEFI Minerals (Ethiopia) Ltd (KME). KEFI announced the acquisition of the remaining 25% of KME in June 2014. The sale was approved by Nyota Minerals Ltd shareholders in September 2014, giving KEFI 100% ownership of KME and the Tulu Kapi project. The Government of Ethiopia is entitled to a 5% free-carried interest.

Since December 2013, KEFI has conducted exploration and further drilling activities to update study documents for re-submission of a mining licence application (MLA) in October 2014.

The former exploration licence that encompasses the Tulu Kapi project was replaced by a Mining Licence on 13 April 2015. This licence gives KEFI the right to build and operate a mine. When the licence was issued, the Company also signed a Mineral Agreement with the Government of Ethiopia, which sets out the fiscal regime, taxation and royalties as they affect the operation of the

Page 10

mine. The licence and mineral agreement were signed by KEFI and the Company's wholly owned subsidiary in Ethiopia, and are valid for 20 years. The mining licence can be renewed, with each renewal subject to a maximum period of 10 years.

Following the acquisition of the project, KEFI decided to refine the 2012 DFS carried out by Nyota Minerals Ltd and reconfigured the conceptual project development approach and completed a revised DFS in June 2015 with emphasis on a smaller scale selective mining open-pit mine operation delivering 1.2 Mtpa of ore to a conventional 1.2 Mtpa CIL plant.

Highlights of the 2015 DFS are set out below:

- An initial funding requirement of approximately US\$175 million, based on the planned use of owner-mining and an all-new processing plant.
- Conventional open-pit mining and straightforward process design incorporating a 1.2 Mtpa carbon-in-leach ('CIL') operation with a simple crushing and grinding circuit.
- Extensive metallurgical testwork confirmed that an overall recovery of 91.5% is achievable.
- Gold production of 960,000 ounces over 13 years with an average of approximately 75,000 ounces per annum.
- All in sustaining costs of circa US\$780/oz.

2.4 Overview of Project Refinements Following DFS

Subsequent to the 2015 Tulu Kapi DFS a number of initiatives have been undertaken to improve the robustness of the project and introduce both improved cash flows and cost reductions. The main improvements on project economics are based on the following:

- Mine operations to be undertaken by an experienced African mining contractor.
- Process plant capacity increased from 1.2 Mtpa to 1.5 Mtpa by treating lower grade stockpile ore earlier in the mine life.
- Target grind for processing plant increased to P₈₀ = 150 μm.
- Processing plant comminution circuit refined and primary SAG mill and secondary Ball mill circuit replaced with larger SAG only circuit.
- Tailings Storage Facility (TSF) was relocated downstream to reduce capital cost with no reduction in capacity for a neutral water balance.
- Main access road routes were refined to decrease capital costs.

2.4.1 Contract Mining

The DFS proposed to undertake mining on an owner operator basis. This would entail training a local workforce with a low or limited skill base to a level capable of achieving the high productivity rates typically required for a mining operation. It would also require the development and implementation of certain operational and maintenance management systems to ensure safe and reliable operation of the mining equipment. Whilst this scenario is still considered achievable there are inherent risks given Tulu Kapi will be the first mining project KEFI have undertaken. Coupled with this, a reduction in the initial capital cost would result from contract mining. As a consequence, it was decided that the mining operations should be undertaken by an experienced African mining contractor.

Five contractors were invited to submit budget pricing. Following the input from the preferred mining contractor regarding the mine plan and agreed mining costs, a number of refinements were made to the plans underlying the 2015 DFS and these were built into the final project plans and cash flow model.

2.4.2 Processing Plant Capacity Increase

Shortly after completion of the 2015 DFS, the Company opened the bidding process for the construction of the process plant and the operation of the mine (rather than operator mining as was original contemplated in the 2015 DFS). Several leading international firms were selected for the bidding process and the short listed firms visited the Tulu Kapi site in order to finalise their bids.

During the engagement process and following discussions with several of the short listed engineering contractors it became apparent that an increase in processing plant capacity from 1.2 Mtpa to 1.5 Mtpa could be achieved with negligible increases in capital costs and without requiring any changes to the mine plan. This allowed material that was previously stockpiled in the 2015 DFS and processed at the end of the mine life to be processed earlier in the mine life. This has the effect of reducing the Life of Mine ('LOM') from 13 years to 10.5 years but increases annual production and improves economics.

2.4.3 Further Upside Potential

KEFI aims to extend the mine life below the 1,400 m level (40 m below the planned base of the open cut) using underground methods. Below this level there is an existing Indicated resource of 1.08 Mt at 5.63 g/t for 200k oz of gold. The underground resource demonstrates the underground mining potential and a Preliminary Economic Assessment ('PEA') is under internal review, with an initial draft prepared by Redden Mining.

3.0 GEOLOGY MINERALISATION AND EXPLORATION

3.1 Introduction

This section has been included for completeness and is as presented in the 2015 DFS. Further details relating to the Geology Mineralisation and Exploration are contained in the 2015 DFS.

The resource estimate was compiled by Snowden Mining Industry Consultants Pty Ltd (Snowden) and KEFI in January 2015 and remains as reported in the 2015 DFS. No additional drilling or mining has been carried out since the completion of the Snowden site visit carried out between 17 July 2014 and 23 July 2014.

3.2 Mineral Resource Estimates

A number of resource estimates have been carried out at Tulu Kapi since 2009 by various consultants with an expanding database including H&S in September 2009, Venmyn in 2010, SRK in 2011 and Wardell Armstrong International ("WAI") in 2012.

The 2012 DFS resource estimate was carried out by WAI using a semi-constrained block model in Datamine using the dynamic anisotropy methodology. This was updated post-acquisition by KEFI in March 2014 in the first update as a means of verifying the WAI methodology and resource estimate. It was also used as a starting point for a small infill drilling program to confirm significant intercepts predicted by the model and for first pass mine planning of the proposed higher grade / reduced throughput operation.

The KEFI March 2014 estimate incorporated significantly more structural control than all previous estimates in the form of closely spaced strike and dip strings on section and in plan defining continuity of mineralisation. These were based on structural measurements and from observations as known and agreed by the geologists experienced with the deposit. The 2014 estimate also used all available data, including 16,000 m drilled by Nyota late in 2012 which missed the cut-off date of the data base (September 2012) used in the 2012 WAI resource estimate. KME also corrected errors in the Nyota / WAI drill database which (along with the missing 16,000 m) had resulted in the underestimation of the Indicated Resource via a lack of downhole survey data being applied to selected drillhole azimuth and dip. The March 2014 estimate was carried out on a 5 x 5 x 1 m block model.

The additional data input by KME (under KEFI) in March 2014 allowed for a 69% increase of the Indicated Resource from 1.1 Moz to 1.86 Moz Au.

The resource estimate was further refined using additional structural data based on surface mapping and trenching plus a small programme of additional reverse circulation targeted at infill drilling and maximising structural interpretation. This work was performed between March and June 2014.

The August 2014, resource update took into account all drilling and trenching conducted to date along with improved understanding of geological and structural controls and was signed-off by Snowden. The estimate was carried out on a $10 \times 10 \times 1.5$ m block model.

In February 2015, KEFI announced the latest JORC compliant independently verified Indicated Resource completed to finalise the basis for the 2015 DFS. As part of the 2015 DFS, the updated Indicated Resource was derived from wireframing all the mineralised structures and has been used as a base for refined pit design, mine scheduling and Ore Reserve estimation.

3.3 Mineral Resource

The classified Mineral Resources for the Tulu Kapi deposit have been reported using a 0.45 g/t Au cut-off grade for a potential open-pit resource above the 1,400 mRL and a 2.5 g/t Au cut-off grade for a potential underground resource below the 1,400 mRL. The elevation limit and cut-off grades are based on open-pit optimisation studies carried out as part of reviews of the previous definitive feasibility study works.

The total Mineral Resource for the Tulu Kapi deposit, as at January 2015, is reported in Table 3.1.

Table 3.1	January 2015 Tulu Kapi Mineral Resource Estimate Reported Above a
	0.45g/t Au Cut-off and 2.5g/t Au Cut-off

JORC (2012) Resource Category	Reporting Elevation	Cut-off (g/t Au)	Tonnes (Mt)	Au (g/t)	Ounces (million)
Indicated	Above 1,400 RL	0.45	17.7	2.49	1.42
Inferred	Above 1,400 RL	0.45	1.28	2.05	0.08
Indicated and Inferred	Above 1,400 RL	0.45	19.0	2.46	1.50
Indicated	Below 1,400 RL	2.50	1.08	5.63	0.20
Inferred	Below 1,400 RL	2.50	0.12	6.25	0.02
Indicated and Inferred	Below 1,400 RL	2.50	1.20	5.69	0.22
Total Indicated	All		18.8	2.67	1.62
Total Inferred	All		1.40	2.40	0.10
Total Indicated and Inferred	All		20.2	2.65	1.72
All numbers are reported to three significant figures. Small discrepancies may occur due to the effects of rounding.					

Additionally, the Total Mineral Resource for Tulu Kapi, as at January 2015, is reported at various cut-offs with no consideration of mining method as outlined in Table 3.2.

JORC (2012) Resource Category	Cut-off (g/t Au)	Tonnes Mt	Au (g/t)	Ounces (million)		
Indicated	0.00	19.6	2.63	1.65		
Inferred	0.00	1.60	2.21	0.11		
Indicated and Inferred	0.00	21.2	2.60	1.77		
Indicated	0.20	19.6	2.63	1.65		
Inferred	0.20	1.59	2.23	0.11		
Indicated and Inferred	0.20	21.2	2.60	1.77		
Indicated	0.30	19.6	2.63	1.65		
Inferred	0.30	1.56	2.26	0.11		
Indicated and Inferred	0.30	21.1	2.60	1.77		
Indicated	0.45	19.5	2.64	1.65		
Inferred	0.45	1.52	2.31	0.11		
Indicated and Inferred	0.45	21.0	2.61	1.76		
Indicated	0.50	19.4	2.65	1.65		
Inferred	0.50	1.51	2.32	0.11		
Indicated and Inferred	0.50	20.9	2.62	1.76		
Indicated	1.00	16.5	2.97	1.58		
Inferred	1.00	1.02	3.05	0.10		
Indicated and Inferred	1.00	17.5	2.98	1.68		
Indicated	2.50	7.10	4.72	1.08		
Inferred	2.50	0.47	4.80	0.07		
Indicated and Inferred	2.50	7.57	4.73	1.15		
Indicated	5.00	2.12	7.79	0.53		
Inferred	5.00	0.18	6.94	0.04		
Indicated and Inferred	5.00	2.30	7.72	0.57		
All numbers are reported to three significant figures. Small discrepancies may occur due to the effects of rounding.						

Table 3.2January 2015 Tulu Kapi Mineral Resource Estimate Reported at VariousCut-off Grades

As part of the continuing work being carried out for the purpose of better understanding the Tulu Kapi mineralisation a master's thesis is being undertaken by Zsolt Molnar, KEFI Minerals Senior Resource Geologist which involves a detailed study of mineralisation and structure within the Tulu Kapi orebody.

The MSc is likely to be finished and published before mining will commence and has goals, amongst others:

- Refinement of drill targeting / planning for exploration and resource definition / estimate via Tulu Kapi structural studies.
- Refinement of resource grade estimation parameters especially domaining of high grade zones and furthering understanding of the relationship between mineralogy and grade.

Details relating to the ore reserve estimate can be found in the 2015 DFS.

The ore reserve estimate which was compiled by Snowden remains as reported in the 2015 DFS.

Snowden updated the Ore Reserve based on the February 2015 Mineral Resource estimate. Pit optimisation was carried out by Snowden using Whittle pit optimisation software, staged pit design production scheduling and mine cost modelling.

Snowden's Ore Reserves at April 2015 are estimated using a 0.5 g/t Au cut-off as provided in Table 3.3.

Table 3.3April 2015 Tulu Kapi Ore Reserve Estimate Reported Above a 0.5 g/t Au
Cut-off Grade

JORC (2012) Reserve Category	Cut-off (g/t Au)	Tonnes (Mt)	Au (g/t)	Ounces (Million)
Probable – High grade	0.90	12.0	2.52	0.98
Probable – Low grade	0.50 to 0.90	3.3	0.73	0.08
Total		15.4	2.12	1.05

Note: Mineral Resources are inclusive of Ore Reserves. Numbers are reported to three significant figures. Small discrepancies may occur due to the effects of rounding.

Table 3.4Competent Person's Assessment of Ore Reserve Estimation for Tulu
Kapi Deposit (Table 1 - Section 4 of the JORC Code)

Item	Comment					
Mineral Resource for conversion to Ore Reserve	Snowden prepared the updated Tulu Kapi Mineral Resource estimate in February 2015. The relevant part of the Mineral Resource estimate is provided below. No planned dilution was applied to these estimates. Mineral Resources are inclusive of Ore Reserves.					
	JORC (2012) Mineral Resource Category	Reporting Elevation	Cut-off (g/t Au)	Tonnes (Mt)	Au (g/t)	Ounces (M)
	Indicated	above 1,400 RL	0.45	17.7	2.49	1.42
Site Visits	No site visit was undertaken by Mr Blanchfield who is one of the Competent Persons for the Ore Reserve estimate, however Mr Di Giovanni, who is the Competent Person for metallurgy has visited the Tulu Kapi project site as well as Mr John Graindorge, a Snowden resource geologist who visited the Tulu Kapi project site for the purposes of Mineral Resource estimation in July 2014. They have reviewed data and photos with Mr Blanchfield to his satisfaction.					
Study Status	Previous studies:					
	A definitive feasibility stu	ıdy ("DFS") was c	completed by the	he previous d	owner, Nyot	a, in 2012
	 Work was completed by Snowden in August 2014 to update Ore Reserves using an update Mineral Resource (by Snowden). Snowden considers that most of the 2014 work completed Ore Reserves estimation was of a pre-feasibility-level accuracy however there were so omissions (that did not affect the materiality of the reserve estimate) that prevented Snow determining the 2014 reporting as a pre-feasibility study ("PFS") and there was no published prevention feasibility studies for KEFI's Tulu Kapi project. 				using an updated ork completed for here were some vented Snowden no published pre-	
	Current studies:					
	 The Tulu Kapi feasibility study ("FS") is at an advanced stage. Snowden has completed most of the mining studies consistent with the accuracy required for this type of study, however costings are currently at a pre-feasibility level but considered still appropriate for the current April 2015 Ore Reserve. These costings are expected to be validated by fully detailed costs at the 					

Table 3.4	Competent Person's Assessment of Ore Reserve Estimation for Tulu
	Kapi Deposit (Table 1 - Section 4 of the JORC Code)

ltem	Comment
	conclusion of the FS.
Cut-off Parameters	An elevated cut-off grade of 0.9 g/t Au is used for the first 10 years of the project production schedule. Ore at a cut-off of between 0.5 g/t Au and 0.9 g/t Au was stockpiled and then processed in the final three years of the project resulting in a project life of 13 years. The marginal cut-off grade was estimated to be 0.47 g/t Au based on the economic inputs and Modifying Factors outlined in this table. It should be noted that the August 2014 Ore Reserve for Tulu Kapi only reported ore at an elevated cut-off of greater than 0.8 g/t and no low grade ore was included in the 2014 Ore Reserve.
Mining Factors and Assumptions	To identify the Tulu Kapi Ore Reserve, a process of Whittle pit optimisation, staged pit design production scheduling and mine cost modelling was undertaken by Snowden. The mining method modelled is conventional open pit drill and blast, load and haul on a 7.5 m high
	blasting bench, reflecting a semi-selective mining approach using 120 t class backhoe configured excavators. No special infrastructure requirements will be required for this mining method. Three months of overburden pre-stripping will be required where a small amount of ore is to be
	STOCKPILED. Planned dilution was applied through modelling a 500 mm vertical block dilution. This reduced the feed ounces by approximately 5% and increased the ore tonnage processed by 9%. An unplanned ore loss of 5% was also applied to the ore inventory.
	Less than 80 kt or 0.6% of the Mineral Resource inside the pit is classified as Inferred. This Inferred resource was considered as diluting grade, and only influenced the grade adjacent in the Indicated Mineral Resource blocks. It is therefore not incorporated into the Ore Reserve.
Metallurgical Factors and	The mineralisation modelled and metallurgical testwork available indicate that conventional CIL extraction can be used, to produce gold as doré.
Factors and Assumptions	The gold is free milling and all the unit processes included in the plant design are standard and common to many current gold operations.
	The testwork program included:
	Comminution testwork.
	Flotation testwork.
	Cyanidation testwork.
	Oxygen uptake.
	Gravity recoverable gold testwork.
	Thickening testwork.
	Cyanide detoxification.
	Variability testwork was conducted on samples from different lithologies and different mineralised zones. Samples were selected mainly to define the differences in ore hardness (or grindability) and gold recovery. Samples were taken from 11 geographically diverse oxide mineralised zones for grindability and extraction testwork, 16 samples from spatially diverse fresh mineralised zones for extraction testwork and five samples from spatially diverse fresh mineralised zones for both comminution variability and extraction testwork. There are no deleterious metals identified.
	No bulk sample or pilot scale test work was justified or completed.
	The metallurgical factors were developed by SENET and reviewed by Snowden. Metallurgical
	recoveries were applied to the Snowden optimisation and Snowden production schedule and KEFI's
	financial model. The algorithms estimate lower recovery at lower ore grade as used for this Ore
	 Reserve estimate include the following: Oxide ore: 100 x 0.986*((DilAu-(0.0465*DilAu+0.0294))/DilAu), ranging from 88.2% to 96.0% LOM, at an average of 95.6%.
	• Fresh ore: 100 x 0.986*((DilAu-(0.053*DilAu+0.0193))/DilAu), ranging from 85.3% to 94.7% LOM, at an average of 94.0%.
	 Fresh hard ore: 100 x 0.986*((DilAu-(0.0916*DilAu+0.0056))/DilAu), ranging from 69.7% to 95.6% LOM, at an average of 89.6%.
	The overall LOM recovery was estimated to be 91.5%.
Environmental	Rock characterisation studies were completed by Golders. No acid rock drainage ("ARD"), or elevated geothermal temperatures were identified.
	The Mining Licence was approved and issued in April 2015. The Mining Licence allows provision for onsite tailings impoundment and waste rock land forms. Final landform waste dumps will be modelled for the DFS.
Infrastructure	Detailed discussions were recently held with local power authority (EEPCo) regarding connection to

Table 3.4	Competent Person's Assessment of Ore Reserve Estimation for Tulu
	Kapi Deposit (Table 1 - Section 4 of the JORC Code)

ltem	Comment					
	the national electricity grid. Other than utility charges, no other significant operating costs arise for grid connected electrical energy usage. Published tariff data for industrial consumers taking supply at high voltage is used as the basis for the operating cost under this supply option.					
	persons to house expatriate and non-local personnel.	nouse expatriate and non-local personnel.				
<i>Cost and</i> <i>Revenue</i>	Process costs were developed from first principles by SENET, for Process costs included the following:	r a new process plant	t.			
Factors	Item	US\$/t ore				
	LOM Oxide Ore Processing Costs	9.41				
	LOM Fresh Ore Processing Costs	7.09				
	LOM Fresh Hard Ore Processing Costs	10.42				
	LOM Average Process Operating Costs	8.17				
	Site G&A	5.38				
	Total	13.55				
	 Pre-feasibility mining costs were developed from first principles by Snowden in 2014 for an all mining cost of US\$2.74 per tonne. This cost was scaled up to US\$3.00 per tonne to allow the costs of semi-selective mining. In June 2015, MACE has confirmed a cost at US\$3.06 p tonne Mining capital costs were estimated to be US\$23.3M including mobile equipment and fixed minfrastructure. MACE later updated the mining capital costs to: Capital Development US\$15.59M. Capital Equipment US\$50.82M. Other capital costs include the following: Process capital costs are US\$58.3M. Tailings infrastructure costs (TSF, roads, power, camp) of US\$21.7M. Indirect costs (EPCM and insurance) US\$12.6M. Owner's costs of US\$8.8M. Sustaining costs of US\$43.9M (including Snowden sustaining capital of US\$12M). 					
	Closure costs were included and estimated to be \$8.25M.					
	Refining costs of US\$5.77 per ounce (US\$8.88 per ounce in A royalty of 7% wars applied to not royanya from solar of go	clusive of transport) \ Id produced	were included.			
	 All costs were supplied in US\$. 	ia produced.				
Revenue Factors	A gold price was supplied by KEFI at US\$1,250 per ounce. T forward price in the financial model.	This was applied rea	al and as a flat			
Market Assessment	In determining the revenue parameters, KEFI conducted comp discussion with likely refiners.	prehensive market s	tudies including			
	A comprehensive marketing study was also completed as part of the Nyota 2012 DFS concluding the refining of the doré. Gold is free trading.					

Table 3.4	Competent Person's Assessment of Ore Reserve Estimation for Tulu
	Kapi Deposit (Table 1 - Section 4 of the JORC Code)

ltem	Comment					
Economic	A discount rate of 8% was applied in the KEFI financial model.					
	A financial sensitivity study was undertaken evaluating capital expenditure, operating costs and gold price. The project was seen to be most sensitive to changes in gold price, with a 20% reduction in price resulting in a breakeven NPV position, whilst a 20% increase in price approximately doubled the NPV.					
	Key project metrics*** (after tax) from the KEFI cash flow model include the following:					
	All in cash cost including royalty, excluding salvage costs (US\$/oz produced)	913.0				
	IRR ungeared (%)	22.7				
	NPV 8% (US\$M)	102.2				
	(US\$/oz produced)*	634.0				
	Initial capital cost** (US\$M)	132.3				
	*Excludes royalty and refining costs.					
	**Excludes working capital and pre-production funding.					
	***Project metrics were re-estimated at the completion of the FS in	June 2015 and resulted in				
	marginal changes to the economics with the NPV increasing to US	\$112M				
Social	A socio-economic study was prepared by Golder Consultants for Nyota and this is documented in 2012 DFS that was completed by SENET for Nyota. The commentary provides a summary of the socio-economic characteristics of the area at a household level. Nyota conducted a stakeholder engagement program and survey in 2010.					
	KEFI has commissioned a community management team and specialist Ethiopian consulting firm Dynamic which, in conjunction with the local government, has facilitated the drafting of the selection and allocation of new host lands, the compensation amounts and the livelihood restoration policy.					
Classification	The Ore Reserve is classified as Probable in accordance with the JORC Code, corresponding respectively to the Mineral Resource classifications of Indicated. No Inferred Resources are included in the Ore Reserve estimate.					
Audits or Reviews	Snowden has completed an internal peer review of the Ore Rese model was also reviewed by Endeavour Financial Limited.	erve estimate. The KEFI financial				
Relative Accuracy / Confidence	Snowden's opinion of Ore Reserve is that the classification of Proba confidence is attributed to the following Modifying Factors:	able is reasonable. However lower				
	 Dilution: The dilution for the proposed selective mining meth 0.5 m dilution zone to the Mineral Resource model, represent waste expected to occur at the boundary by the excavator. As 2 m to 3 m wide, the realised grade will be sensitive to achiev confirmed by a production reconciliation process 	nod was modelled by applying +/- ing the average mixing of ore and the mineralised lodes are typically ring this outcome and can only be				
	 Mining costs: The mining costs are currently at a pre-feasibility will be upgraded to an appropriate level of accuracy for the c OEM and project specific budget quotations from contractors 	/ level of accuracy; however these conclusion of the current FS using				
	 A blasting study should be undertaken for further validation of proposed mining method. 	of the dilution assumptions for the				

4.0 MINING

4.1 Introduction

Subsequent to the 2015 Tulu Kapi Detailed Feasibility Study (DFS) a number of initiatives were undertaken to more accurately reflect the operating potential of the project and introduce both improved cash flows and cost reductions. The following sections describe initiatives undertaken subsequent to the 2015 DFS.

4.2 Basis of Mine Design

4.2.1 Design Parameters

The pit slope and ramp configurations remain unchanged from the DFS. Rationalisation of the premining works has however been undertaken to reduce unnecessary burden on pre-production costs. These changes are described later in this section.

4.2.2 **Pre-Mining Construction**

Rationalisation of pre-mining works has resulted in a reduction in the initial excavation materials required for project bulk earthworks. Figure 4.1 shows the extent of the earthworks proposed in the DFS and the revised layout is shown in Figure 4.2. The DFS schedule required movement of approximately 1,300,000 bcm. The revised design requires only approximately half of this volume being 610,000 bcm. Plant site layouts and tailings storage facilities were balanced for cut to fill or have the necessary materials within their own footprint.

Figure 4.2 Pre-Mining Works Study Update

The pre-mining bulk earthworks required for construction will be undertaken by a separate earthmoving contractor during the construction period. Operations completed in this period will be carried out independently of the mining fleet and will include the following scope:

- Site access road to the process plant site.
- Accommodation village pad.
- Process plant pad and mining contractor laydown area.
- Tailings dam.
- Water Dam and diversion channels.

During construction of the process plant a reinforced earth wall will be constructed for the primary crusher installation. The engineering fill and any necessary bulk fill will be placed by the EPC contractor. The mining contractor will place fill against this material at a later date during the preproduction period.

A mining contractor will undertake the bulk earthworks necessary for the commencement of production from the mine excavation. The pre-production scope of work required by the mining contractor has been substantially reduced owing to the high fixed cost associated with the mining contractor's site overheads. Much of these works will be undertaken by either the bulk earthworks contractors or the EPC contractor.

The pre-production bulk earthworks currently allowed to be undertaken by the mining contractor include the following:

- Initial ROM pad.
- ROM pad haul road from the pit.
- Access track to the explosive magazine.
- Explosive magazine pad.
- Emulsion plant access road and pad.

These works were scheduled to be undertaken in the three month period prior to process plant commissioning. It should be noted that the magazine facility and emulsion plant facility will likely need to be constructed by the bulk earthworks contractor.

4.3 Pit Design and Refinements to Mine Schedule

4.3.1 Re-sequencing Stage 1 Pit Development

Several improvements to the Tulu Kapi DFS mining schedule were investigated by Mining and Cost Engineering Pty Ltd (MACE) to enhance the project cash flow. These included the following:

- Splitting Stage 1 into two sub-stages, Stage 1A and 1B to access higher grade earlier in the project life.
- Vertical advance rates were increased from 45 m/yr or six benches to an average of 58 m/yr or eight benches following discussion with the potential mining contractor.
- Total movement capacity was increased by 6 Mt/yr whilst mining through the semi-barren areas of Stage 2.

These project improvement initiatives are discussed in more detail in the following section.

Initial Stage Design

The Snowden Stage 1 pit design, as shown in Figure 4.3, was based on DFS shell 12 and reported a processing inventory of 5.0 Mt at 2.40 g/t with a total pit inventory of 38.4 Mt. This is compared to the original shell 12 inventory of 4.40 Mt at 2.47 g/t for a total pit of 26 Mt. This represents a 47% increase in total stage inventory between pit shell and pit design.

The DFS scheduling of this Stage 1 design showed higher grade material being delayed until Years 2 and 3 due to the majority of the higher grade (>=0.90 g/t) material being contained in the lower benches.

Figure 4.3 Original Stage 1 Design

In reviewing the Whittle shells, opportunities were identified to bring forward higher grade by subdividing the pit stage through the use of DFS pit shell 10. This was used as a guide for a smaller interim Stage 1 design to bring higher grade into Year 1. As shown in Figure 4.4, Whittle shell 10 focussed more on the southern area of Stage 1. In contrast, the DFS mining schedule focused early mining in the northern end of the pit. This was due to the higher elevation and simple bench by bench mining progression of the stage.

Figure 4.4 Original Stage 1 Design with Whittle Shell 10 (red)

To improve early cash flow the DFS Stage 1 design was subdivided into two sub stages, Stage 1A and 1B as shown in Figure 4.5. The inventory for Stage 1A was estimated to be 2.8 Mt at 2.44 g/t with a total pit inventory (ore and waste) of 19 Mt. The inventory of Stage 1B was estimated to be 2.5 Mt at 2.33 g/t with total pit inventory of 20 Mt.

Using this pit configuration, the mining strategy proposes to mine Stage 1A initially and delay Stage 1B until Month 9 (Qtr 2). This strategy was modelled using Minesched software and resulted in the average grade processed in Year 1 increasing to 2.5 g/t, compared to the DFS Year 1 average grade processed of 1.9 g/t.

Figure 4.5 Original Stage 1 Design (green) with Stage 1A (blue).

This strategy also provides an additional benefit in that initial mining is away from the existing exploration camp facility (circa 100 m), located at the top of the ridge. Whilst the camp will require clearing during blasting, it could potentially be used for some purpose up until Month 7 when mining commences in Stage 1B.

Vertical Advance Rate

The original schedule was constrained by a vertical advance rate (VAR) of 45 m/yr or 6 benches. Following discussion on this issue with the preferred mining contractor the VAR was increased to the figures shown in Table 4.1.

	To Complete		Vertical Advance Rate		
Phase	Months	Benches	m	Ave m/mon	Ave m/yr
Stage 1A	25	17	128	5.1	61
Stage 1B	38	27	203	5.3	64
Stage2	53	33	248	4.7	56
Stage 3a	29	17	128	4.4	53
Stage 3b	9	8	60	6.7	80
Stage 3	52	31	233	4.5	54

Table 4.1	Stages Vertical Advanc	e
		-

It should be noted that Stage 3b has a significantly higher VAR; however this was considered achievable due to the stage having smaller bench ore inventories and therefore consists of mostly bulk waste material which is mineable at a faster rate.

Mill Throughput Increase

The original schedule was based on a 1.2 Mtpa throughput. This resulted in high grade stockpiles growing to greater than 1.5 Mt and low grade stockpiles reaching more than 3.0 Mt. The higher throughput rate process plant design is expected to realise an increase in plant throughput to 1.50 Mtpa. This re-configured plant design would also allow an increase to 1.70 Mtpa when processing softer ores in the early years of production.

Following a detailed analysis of the distribution and presentation of ore hardness within the mining sequence the following mill throughput rates were applied in the mining schedule:

- Year 1: 1.43 Mt (ramp up during commissioning in 1st qtr of Year 1).
- Year 2 to 4: 1.70 Mt per year.
- Year 5 onwards: 1.50 Mt per year.

A comparison of the updated mining and processing schedule to the original DFS schedule is shown in Figure 4.6, Figure 4.7 and Figure 4.8. The updated schedule reduced high grade stockpile levels to a maximum of 500,000 t whilst low grade remained at inventories of circa 3.0 Mt and will still be processed in the closing stages of the project.

Figure 4.7 Comparison Between Snowden DFS to Updated Schedule of Throughput Grade

Notes: 1. Using DFS recovery algorithms.
4.3.2 Increased Mining Rate

Stage 2 will be the largest stage in terms of the total 54 Mt of material to be mined. It contains nearly twice the inventory of the other stages. With the mining rate capped at 18.5 Mt per year in the DFS, the higher grade ore production rate fell and subsequently the grade available to the plant decreased in some quarters to around 2.0 g/t. The original VAR through Stage 2 was, on average, 3.58 m per month which would be less than half a bench per month. In addition, the Stage 2 benches dimensions are in the vicinity of 250 m wide and approximately 600 m long and contain substantially less mineralisation compared to other areas of the pit as shown in Figure 4.9. It was therefore deemed feasible to increase the mining rate in Stage 2 once the smaller upper benches were complete. Total movement was therefore increased from 18.5 Mtpa to 24.5 Mtpa from Qtr 8 and later reduced in Qtr 20 as shown in Figure 4.10. This increase resulted in improved grades being presented to the process plant and at the same time reducing the life of mine by 6 to 7 quarters resulting in savings in contractor fixed cost charges.

Figure 4.9 Stage 2 Dimensions (dark) Showing Ore and Waste on 1,715 mRL Bench

This strategy would require the addition to the mining fleet of a 120 t excavator with an annual capacity of 6.0 Mt. Following discussions with the preferred mining contractor, it was understood that this machine would already be on site, having been mobilised for construction and early stage mining and then subsequently retained on site for miscellaneous work; hence this increase in mining rate would only require an increase in utilisation of the existing 120 t excavator. Additional trucks will also be required to cater for the increased movement. To account for this, a commensurate increase in truck fleet of four additional trucks was allowed for in the mining costs bringing the total fleet on site to 18 trucks.

4.4 Revised Mining Schedule

The results of the revised mine production schedule are shown in the following tables. The mining schedule is summarised in Table 4.2, the stockpiling schedule is summarised in Table 4.3 and the processing schedule summarised in Table 4.4 and the mining quarterly advance is presented graphically as annexure in Section 5 of the 2015 DFS report.

ROJECT	
PI GOLD P	JPDATE
TULU KA	STUDY L

Table 4.2 Tulu Kapi Mining Schedule

Page 29

						Pe	riod (year)					
Buium	Total	÷	£	7	e	4	5	9	7	80	6	10
Total movement (kt) - Stage 1A	18,573	1,203	9,312	8,058								
Total movement (kt) - Stage 1B	20,090		1,791	6,978	8,779	2,542						
Total movement (kt) - Stage 2	54,076			695	14,781	17,767	14,912	5,832	89			
Total movement (kt) - Stage 3	35,937					4,191	8,769	8,385	8,939	5,560	93	
Total movement (kt) - Stage 4	899								22	877		
Total movement (kt)	129,575	1,203	11,103	15,731	23,560	24,500	23,681	14,217	9,050	6,437	93	
Waste (kt)	114,214	991	9,240	13,166	21,265	22,825	21,404	12,251	7,688	5,309	76	
Total ore (kt)	15,361	213	1,863	2,565	2,295	1,675	2,277	1,966	1,363	1,128	16	
- Grade – Au (g/t)	2.12	1.45	2.01	1.88	1.93	2.01	2.19	2.33	2.13	2.93	10.17	
Saprolite (kt)	914	186	368	213	65	-	14		0	68		
- Grade – Au (g/t)	1.55	1.49	1.62	1.56	1.64	0.75	1.24		1.03	1.29		
Fresh (kt)	10,081	27	1,495	2,353	2,230	1,501	1,831	529	. 	113		
- Grade – Au (g/t)	1.99	1.22	2.10	1.91	1.94	1.90	2.19	2.07	1.11	1.31		
Hard (kt)	4,366					172	432	1,437	1,361	947	16	
- Grade – Au (g/t)	2.54					2.91	2.24	2.42	2.13	3.24	10.17	

May 2017 KEFI Minerals PLC / MACE

1953\17.04\1953-000-GEREP-0001_C

TULU KAPI GOLD PROJECT STUDY UPDATE Table 4.3 Tulu Kapi Stockpiling Schedule

Page 30

Stockailo	Max						Period (year	(.				
эгоскрпе	INIAX	Ţ	-	7	e	4	5	9	7	æ	6	10
HG Stockpile												
Addition												
Total (kt)	1,954	147	1,482	1,954	1,741	1,260	1,779	1,579	1,100	962	16	
- Grade – Au (g/t)	2.25	1.79	2.34	2.25	2.32	2.44	2.61	2.73	2.47	3.31	10.19	
Reclaim												
Total (kt)	1,700		1,430	1,700	1,700	1,700	1,504	1,500	1,500	908	16	
- Grade – Au (g/t)	2.43		2.49	2.43	2.36	2.08	2.89	2.82	2.10	3.23	10.19	
Size												
Total (kt)	520	174	225	479	520	81	356	435	35			
- Grade – Au (g/t)	1.07	1.87	1.07	1.07	1.07	1.07	1.07	1.07	1.07			
LG Stockpile												
Addition												
Total (kt)	612	66	381	612	553	415	498	387	263	166	0	
- Grade – Au (g/t)	0.69	0.69	0.70	0.69	0.70	0.70	0.70	0.69	0.70	0.70	0.78	
Reclaim												
Total (kt)	1,488									502	1,488	1,356
- Grade – Au (g/t)	0.75									0.80	0.75	0.60
Size												
Total (kt)	3,180	73	454	1,065	1,619	2,033	2,531	2,918	3,180	2,844	1,356	
- Grade – Au (g/t)	0.70	0.69	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.68	0.60	

TULU KAPI GOLD PROJECT STUDY UPDATE Table 4.4 Tulu Kapi Processing Schedule

Page 31

	+						Period (ye	ar)				
LI OCESSII G	I OIGI	Ţ	۲	2	3	4	5	9	7	8	6	10
Saprolite (kt)	948		350	140	79	44	9	2	ę	06	122	113
- Grade – Au (g/t)	1.56		2.14	1.99	1.62	1.07	1.68	1.09	1.11	1.19	0.75	09.0
Fresh (kt)	10,081		1,080	1,560	1,621	1,512	1,219	458	232	436	1,026	936
- Grade – Au (g/t)	1.99		2.60	2.46	2.39	1.99	2.87	2.34	1.07	0.94	0.75	09.0
Hard (kt)	4,366					144	279	1,040	1,266	974	356	307
- Grade – Au (g/t)	2.54					3.34	3.03	3.03	2.29	3.19	1.18	0.60
Total (kt)	15,394		1,430	1,700	1,700	1,700	1,504	1,500	1,500	1,500	1,504	1,356
- Grade – Au (g/t)	2.12		2.49	2.43	2.36	2.08	2.89	2.82	2.10	2.42	0.86	0.60
Metal												
Feed - Au (koz)	1,050		114	133	129	114	140	136	101	117	41	26
Recovered - Au (koz)	980		108	124	119	105	134	128	93	111	36	22

1953/17.04/1953-000-GEREP-0001_C

4.5 Waste Dump Design

4.5.1 Overall Layout

For the 2015 DFS waste dump designs were included to the south of the pit and to the west. The waste dump to the north forms the ROM pad with some extension required when mining Stage 4. Figure 4.11 shows the final mining surface at the completion of the stockpile reclaim, with waste dumps, ROM pad and the ultimate pit with other non-mine infrastructure items labelled.

The waste dump designs remain as established in the 2015 DFS and details on the designs are given in the 2015 DFS.

Figure 4.11 Final Surface at Completion of Mining Operations

4.5.2 Risks and Opportunities

During the study update, a number of risks and opportunities were identified which were not explored due to time constraints.

Waste Dumping and Haulage Optimisation

Following discussions with the preferred contractor it was agreed that significant cost savings could be achieved by optimising the haul routes and dump locations. Significantly shorter hauls could be achieved on benches which 'daylight' on the existing topography, especially in the northern areas of the pit. Temporary haul roads could be established to shorten the haul to these dump locations.

Northwest Waste Dump

Valleys adjacent to the pit in the northwest area could be used as short haul dumping locations resulting in cost reductions. A preliminary concept design for this facility is shown in Figure 4.12.

Figure 4.12 Northwest Waste Dump Concept

ROM Pad Configuration Optimisation

The crusher location proposed in the FEED design is 250 m closer to the pit exit than that proposed in the DFS. In addition, the reduced high grade stockpile capacities will not require a ROM pad storage area of the size proposed in the DFS. The ROM pad layout can therefore be further optimised to reduce any unnecessary haul.

Waste Dump Stability Assessments

The waste dump stability assessments carried out in the DFS used the parameters derived from the site investigation of the northern dump area (i.e. ROM pad location). The analysis assumed the base of dump geotechnical conditions would be similar for the southern and south-western dumps. Geotechnical assessments of the actual site conditions should be undertaken before these and any other dump locations are approved for construction.

The assessment should also include potential to maximise end tipping construction rather than lift by lift construction. This will enable haul routes to be reduced with commensurate cost reductions.

These investigations have been budgeted for in the Initial CAPEX.

Open Pit to Underground Transition Study

An open pit to underground transition study should be undertaken to evaluate the most commercially efficient method of extracting economic mineralisation. If it is demonstrated that the depth of the pit should be reduced due to the lower benches being more economical to mine from underground, the pit optimisation should be rerun to identify any potential to reduce the open pit mining envelope and thereby reduce the amount for waste movement.

4.6 Mining Methods

4.6.1 Mining Techniques

The quality and quantity of ore delivered to the processing plant and the minimisation of ore dilution and ore loss are the main aims.

Blasts will be designed by KME's technical department and implemented by the Contractor to achieve the desired fragmentation and digability whilst minimising the disturbance to ore blocks and damage to final pit walls. Procedures will be established to enable the technical department to conduct a final review and make improvements as necessary on the blast designs prior to drilling commencing.

Following bench establishment, mining will continue to limits predetermined by the technical department. Ore, including both high grade and low grade ore, and waste, including selective waste and bulk waste, will be identified by the technical department. Excavation levels will be controlled by the use of the Contractor's laser levelling system.

High grade ore, low grade ore and selective waste blocks will be marked out by the technical department on each bench with colour coded markers.

The contractor will excavate high grade ore, low grade ore, selective waste and bulk waste as directed by the technical department using appropriate equipment.

Pit walls will be formed and excavated at angles designated by the technical department. Mining will generally be carried out by excavating high grade ore, low grade ore, selective waste and bulk waste separately. However, concurrent mining may be required from time to time. The contractor

will implement methods and practices approved by the owner that will ensure correct identification, excavation and delivery of each material to its design tipping point.

Selective Mining Technique

Within the mining cycle there will be a specific requirement for excavator cleaning and re-handling of waste material to ensure mining selectivity. It is envisaged that mining will progress across the bench from hanging wall to footwall when possible to avoid collapsing ore into the waste zones. The selective mining process will contain seven steps:

- 1) Bulk waste removal.
- 2) Cleaning waste from the hanging wall contact.
- 3) Re-handling of selective waste.
- 4) Removal of bulk ore.
- 5) Cleaning of selective ore to the footwall contact.
- 6) Re-handling of select ore.
- 7) Continue mining the waste material.

Bottom Loading of Trucks

The cycle will utilise top loading of trucks where practicable. However, the excavator will utilise bottom loading in a number of situations or as directed by the technical department:

- Removing waste less than 1 m thick from the ore on the hanging wall contact of the lode.
- Moving final ore from waste on the footwall contact of the lode or when the ore is less than 1 m thick.
- When re-handling stockpiles of material created from the above two activities.

For ore lodes greater than 2 m wide, the excavator will be able to resume top loading activities. Based on the data contained in the latest schedule, currently 5% of the total material movement is categorized as selective ore and waste mining.

4.6.2 Drill and Blast

Increase of Blast Hole Diameter to 127 mm from 114 mm

Following collaborative discussions with the preferred mining contractor, it was agreed that the proposed blast hole diameter should be increased from 114 mm to 127 mm with a commensurate increase in pattern size. This assessment was made in conjunction with a fragmentation analysis conducted by Itasca and is discussed in the next section.

This change offered certain commercial advantages:

- More cost efficient drilling per unit of hole volume and per bcm.
- Reduction in the unit cost per bcm of initiating explosives.

These costs represent 50% of the cost of a standard blast hole. An example of the comparative saving is shown in Table 4.5.

The DFS also allowed for RC grade control holes to be drilled within the pattern for use as blast holes. This strategy was intended to reduce the cost for drill and blast by reusing the hole; however, the increase in blast hole diameter does not allow for the RC drilling to be used in this manner. The optimised scenario therefore proposes the use of in-pit RC. Costs allow for patterns to be drilled on a 10 m by 10 m grid to a depth of 30 m (four benches). This significantly reduces the RC drill metres required and associated costs.

Description	Units	DFS	2017 Opt
Diameter	mm	114	127
Bench	m	7.5	7.5
Subdrill	m	0.75	0.75
Drill depth	m	8.3	8.3
Stemming	m	2.3	2.5
Charge length	m	6.0	5.8
Unit charge weight	kg/m	12.4	15.3
Charge weight per hole	kg/hole	73.5	88.1
Powder Factor	kg/bcm	0.49	0.49
Yield	bcm/hole	150	180
Unit cost of drilling	m	\$12.71	\$13.18
Unit cost of charging	hole	\$23.18	\$23.18
Emulsion cost	t	\$1,796.09	\$1,796.09
Cost of drilling	\$/hole	\$104.86	\$108.74
Cost of charging	\$/hole	\$23.18	\$23.18
Cost of emulsion	\$/hole	\$131.99	\$158.30
Total cost of hole	\$/hole	\$260.02	\$290.21
Cost per bcm	\$/bcm	\$1.73	\$1.61
Commercial Benefit		0%	-7%

Table 4.5Comparison Cost of 114 mm and 127 mm Diameter Blast Holes

Fragmentation Analysis Using 127 mm Diameter Blast Holes

A more detailed assessment of the powder factor for the fresh rock in the pit was carried out to investigate opportunities to reduce costs through a reduction in powder factor without compromising project efficiencies or ore recovery. This was achieved by assessing the fracture frequency distribution within the main pit excavation to interpret the likely "mean block size", a key parameter used in the Itasca fragmentation analysis.

Fracture frequency (FF) was estimated into the block model by the KEFI geologists using the 'nearest neighbour' technique. The distribution of the FF was then reported and is given in Table 4.6. This distribution was then assessed in the context of the block size estimates provided by Itasca and given in Table 4.7. This table summarises the estimated average block diameter (Db) for each rock type based on mean (P_{50}), P_{20} , and P_{80} sizes using discontinuity spacing summarised by Snowden (2015). Db values ranged from 0.17 m to 0.99 m for the Syenite and Eastern Diorite rock types.

FF Cut-off	Vol	Cum Vol	% Total
n/m	M.bcm	M.bcm	
0.0	2.0	40.7	100%
1.0	3.3	38.7	95%
2.0	4.4	35.4	87%
3.0	4.6	31.1	76%
4.0	5.6	26.5	65%
5.0	5.0	20.9	51%
6.0	3.9	15.9	39%
7.0	3.0	12.0	29%
9.0	2.0	9.0	22%
10.0	6.2	7.0	17%
20.0	0.6	0.7	2%
30.0	0.1	0.2	0%
40.0	0.0	0.1	0%
50.0	0.0	0.1	0%
60.0	0.0	0.1	0%
70.0	0.0	0.1	0%
80.0	0.0	0.0	0%
90.0	0.0	0.0	0%
100.0	0.0	0.0	0%

Table 4.6 Fracture Frequency Distribution Estimated within Main Pit

	Rock Type	Spacing (m)	Mean FF (ff/m)	J _v (joints/m³)	V _b (m ³)	D _b (m)
an	Syenite	0.18	5.56	11.11	0.03	0.30
Me	Eastern Diorite	0.28	3.57	7.14	0.10	0.46
20	Syenite	0.10	10.00	20.00	0.01	0.17
сd	Eastern Diorite	0.12	8.33	16.67	0.01	0.20
30	Syenite	0.33	3.03	6.06	0.16	0.54
ĥ	Eastern Diorite	0.60	1.67	3.33	0.97	0.99

Table 17	Estimated	Average In	Situ	Block	Siza 1	for I	Each	Rock .	Tyne
1 abie 4.7	Estimated	Average in	Situ	DIUCK	Sizei		Each	RUCK	rype

Notes:

1. β assumed to be 36, which corresponds to a 'common block shape' as described Palmstrom (1995)

2. Jv =volumetric joint count

3. Vb = block volume

4. Db = block diameter

5. Based on relationships proposed by Palmstrom (2001).

It can be seen from the distribution of FF in Table 4.4 that a large portion of the pit volume is expected to comprise material with a FF of greater than 5.0 which was interpreted from Table 4.5 to represent an average in situ block size of 0.3 m or less. This volume of material has a weighted average FF of circa 10. The remaining more competent material within the pit was estimated to have weighted average of 2.9.

These values suggest that circa 50% of the pit volume would be drilled and blasted with a mean block size of 0.3 m and the balance 0.5 m. The Itasca fragmentation estimates for 127 mm dia holes were then used to determine an average powder factor for bulk waste and a separate powder factor for ore, selective ore and selective waste.

In addition, following discussion with the preferred mining contractor it was agreed that the bulk waste size distribution could be relaxed to at least 98% passing 750 mm whereas the ore fragmentation would remain at 98% passing 600 mm (the aperture of the ROM bin grizzly). The resultant blasting parameters are given in Table 4.8.

Table 4.8	Drill and Blast Parameters	Applied To Fresh	Rock in 2015 Optimisation
-----------	----------------------------	------------------	---------------------------

Classification		Ore/Select Waste	Ore/Select Waste	Bulk Waste	Bulk Waste
	Units	Fresh FF<5	Fresh FF>5	Fresh FF<5	Fresh FF>5
Material Type		Snowden P ₈₀ Syenite	SRK P₅₀ Syenite	Snowden P ₈₀ Syenite	SRK P₅₀ Syenite
Material Density	t/bcm	2.74	2.74	2.8	2.8
Hole Diameter	mm	127	127	127	127
Bench Height	m	7.5	7.5	7.5	7.5
Subdrill	m	0.75	0.75	0.75	0.75
Fall Back	m	0	0	0	0.3
Stemming	m	2.5	2.5	2.5	2.5
Product Density	g/cc	1.2	1.2	1.2	1.2
Powder Factor	kg/bcm	0.74	0.67	0.58	0.5
Powder Factor	kg/t	0.27	0.24	0.21	0.18
Hole Depth		8.25	8.25	8.25	8.25
Stemming Density	t/m ³	2.1	2.1	2.1	2.1
Spillage Factor		0.1	0.1	0.1	0.1
Mass of Stemming per Hole	kg	73.16	73.16	73.16	73.16
Unit Charge Weight	kg/m	15.20	15.20	15.20	15.20
Charge Weight per Hole	kg/hole	87.41	87.41	87.41	87.41
Yield	bcm/hole	118.12	130.46	150.70	174.81
Yield	t/hole	323.64	357.46	421.97	489.48
Blast Hole Factor	holes/t	0.00	0.00	0.00	0.00
B:S Ratio	ratio	1.15	1.15	1.15	1.15
Burden	m	3.69	3.88	4.17	4.49
Spacing	m	4.26	4.48	4.82	5.19
Provision for face hole inefficiency		0.02	0.02	0.02	0.02
Specific drilling	bcm/m.drill	14.04	15.50	17.91	20.05
Proportion of blasts		50%	50%	50%	50%
Average Specific Drill Factor		14	1.8	19).0

In addition to the above changes to the drill and blast parameters for fresh rock, the original provisions for blasting of the saprolite material were revised following discussion with the preferred mining contractor. On inspection of core photos it was agreed that much of the material could be freely dug or easily dug with light blasting. As a consequence, the powder factors allowed for saprolite were revised down from 0.35 kg/bcm to a nominal 0.25 kg/bcm for ore and select waste and 0.2 kg/bcm for bulk waste.

Definition of Material to be Mined

The Tulu Kapi open pit, below the surface soil layer (circa 0.3 m depth from surface), is broadly divided into two weathering zones, being weathered and fresh. The transition zone between the two ranges is expected to range from less than a metre thick to several metres within the pit excavation footprint.

Weathered Material Classification

The weathered material will be a saprolite. Saprolite is typically described as a soft, thoroughly decomposed and porous rock, often rich in clay, formed by the in-place chemical weathering of igneous, metamorphic, or sedimentary rocks. The Tulu Kapi saprolite will mostly be weathered syenite and vary in colour from red - brown to yellow - brown depending on the degree of weathering and oxidised iron content which mostly determines the colouring. The primary minerals in the saprolite are plagioclase feldspar, K-feldspar, quartz and hornblende; the common secondary minerals are goethite, kaolinite, sericite and chlorite. Generally it is soft, friable and breakable by hand or easily hammered apart by hand depending on the degree of weathering and relative depth below surface.

Weathered material will include Residual Soil and Weathered Rock.

The Residual Soil will occur to a depth of approximately 1 m to 3 m below natural surface and have the strength properties of an engineering soil, with an UCS less than 1 MPa; hence, it will have a Point Load Index (Is50) of less than 0.05 MPa. This material is classified as 'Free Digging' or where excavation can possibly be aided by light ripping in any laterite capping horizons.

The Residual Soil will occur to a depth of approximately 10 m to 40 m below natural surface and the weathered rock materials will have estimated compressive strengths in the ranges of 1 to 20 MPa, equivalent to Is50 values of approximately 0.05 to 1 MPa, with a typical fracture spacing of 0.05 m to 0.25 m. This material may be excavated by ripping with large dozers (D9 or bigger), possibly aided by light paddock blasting in the deeper, less weathered sections

Fresh Material Classification

The 'Fresh Material' will include rocks such as syenite, albitised syenite, diorite and sheared diorite.

Fresh rock will have compressive strengths in the ranges of 50 to >200 MPa, equivalent to Is50 values of approximately 2.5 to >10 MPa, with a typical fracture spacing of 0.1 m to 0.6 m. The weaker range of these rocks may be broken by ripping with large dozers (D9 or bigger), but in practice can only be excavated efficiently by conventional drill and blast methods.

4.7 Contract Mining Strategy

A tender process was initiated in July 2015 with a number of tenderers invited to submit nonbinding budget pricing for the DFS scope of work. KEFI provided an undertaking to the tenderers that a contract would be awarded to the preferred tenderer based on the following:

- Successful negotiation of terms and conditions.
- Contractor successfully completing due diligence on in-country operating environment, project risk and KEFI corporate risk.
- KEFI securing project funding.

The tenderers visited the Tulu Kapi site on 23 July 2015 prior to submitting pricing.

A number of rounds of pricing were initiated. The final pricing scenario was based on a life-of-mine scope of work and issued to a short list of three remaining contractors. Tender submissions were evaluated primarily on a commercial basis. Following further negotiation, the preferred tender was selected from two remaining candidates. The final determination was based on a number of non-commercial factors such as technical capability, operational experience and the ability of the contractor to introduce established systems to the project.

It should be noted that the project is exempt from import duties and related taxes during the construction period and up to the first three months of production. Contract pricing has not allowed for any burdens associated with the import of plant and/or materials associated with the project.

4.7.1 Contract Scope Optimisation

The unit rates that underpinned the preferred contractor pricing were used in this phase of project optimisation in this Study Update.

Subsequent to identifying the preferred contractor, collaborative discussions and workshops were held to identify opportunities to optimise the mining approach and scope of the contract to reduce overall mining cost and improve project cash flows. The key opportunities identified included the following:

- Increasing blast hole diameter from 114 mm to 127 mm.
- Detailed assessment of project powder factors.
- Accelerated mining of Stage 2 cut-back.
- Re-sequencing Stage 1 pit development.
- Reduction in preproduction scope of work.
- Optimise waste haulage and dumping locations.

4.7.2 Scope of Services Summary

The scope of services to be undertaken by the Contractor includes the following:

- Construction earthworks.
- Pre-production and mine establishment.
- RC Grade Control drilling and sample collection.
- Drilling and blasting of ore and waste.
- Dewatering of mining areas.
- Ore and waste mining.
- Ore re-handle from ROM stockpiles.
- Waste dump and other site rehabilitation works.

The Contract excludes.

- Sample collection, sample assay, assessment and grade control interpretation.
- Site security.
- Supply and delivery of explosives and accessories to the Site.
- Supply of emulsion explosive into the blast hole.
- Supply of diesel fuel for mining. Diesel fuel will be supplied free of charge to the Contractor and only available from the Principal's onsite bulk fuel storage facility.
- Supply of diesel fuel for back-up power generation for offices, workshops and facilities lighting (excluding all mining operations).
- Seeding, planting, fertilising and mulching of final land form.
- Setting out of the works.
- Construction of access roads that are outside the boundaries of the Mining Area.

4.8 Mining Operations

4.8.1 Equipment Selection

The equipment selected for the Tulu Kapi project and the basis for this selection is given in the 2015 DFS. This was further refined during the tender process and following discussion with the preferred mining contractor.

It is however expected that the ultimate specification will not vary materially from the machines outlined below.

Excavator

Three sizes of excavator are proposed for Tulu Kapi, each of which will perform specific mine production duties as identified in Table 4.9.

		Machine Size	
	40 t to 50 t	120 t to 150 t	180 t to 200 t
Borrow Pit Earthworks			
Selective Mining			
Bulk Excavation			
Batter Pulling			
Rock Breaking			
Topsoil Rehandle			

 Table 4.9
 Excavator Tasks by Machine Size

Both the 120 t and 200 t machines will be capable of loading the haul trucks. The 120 t class machine was included for its selective mining capability and flexibility during the construction phase. The 200 t machine is the largest machine capable of loading the proposed mine trucks. This will enable higher production rates and reduce the number of loading areas required, thereby providing more flexibility within the working areas of the pit.

The 120 t machine will be brought to site during the construction period to produce borrow material for the ROM pad as well as magazine and emulsion plant pads. The 200 t machines will be mobilised prior to commissioning of the process plant.

The 120 t machines will perform the crucial duty of separating the ore and waste selective material at the hanging wall and footwall contact. This will prepare the area for the larger 200 t machines to operate more efficiently in removing the stockpiled selective material as well as the bulk material on the flitch. Two 120 t machines and up to two 200 t machines were allowed for in this study and the number of machines matches the requirement to achieve simultaneous mine production from three independent locations in the pit. Once all machines have been commissioned on site the installed maximum capacity of the machines is estimated to be circa 30 Mtpa. This compares to a scheduled maximum requirement of 24.5 Mtpa.

A smaller 40 t machine will be used predominantly to clean the batters of loose material and provide backup for sorting of the selective material. The same size machine will be fitted with a rock breaker to reduce oversize in the pit and on the ROM pad as required. Ancillary duties such as roadworks and drain clearing are assigned to this machine and only one machine is required for the Tulu mine.

Mine Dump Trucks

Rigid body 90 t class mine dump trucks are proposed for the project. This size machine maximises the use of the design width of the pit ramps and surface haul roads (25 m). The trucks will be typically 6 m wide and require a minimum running surface of 18 m for dual lane ramps and 9 m for single lane ramps. The remainder of the design width will allow for toe drains and safety windrows.

This size of truck was selected to also maximise the size of excavator which can be used in the pit for digging bulk ore and waste as well as re-handling the selective material stockpiled by the 120 t machine described earlier. This will minimise the number of loading areas required to maintain the proposed production rate.

Front End Loader

The production schedule has 41% of ore rehandled from the stockpiles, while 59% is direct tipped to the crusher. Ore will be rehandled from the ROM stockpile to the crusher by a Caterpillar 988 front end loader or equivalent size machine.

Grader

Provision was made for up to two graders to be included in the fleet. The proposed graders will have a 4.9 m (16 ft) mould board and will be used for haul road maintenance around the site.

The size of grader proposed is commonly used in combination with the proposed trucking fleet and was selected to minimise the number of passes required to maintain each section of road and therefore interference with the haulage fleet.

Drills

The blast hole drilling fleet will be a combination of top-hole-hammer drills and down-hole-hammer drills depending on the application. The drills will be small mobile boom mounted machines, rather than large deck mounted machines. The predominant hole size proposed is 127 mm, however a variety of hole sizes will be required depending on the application and the need to control fragmentation and mitigate blast damage.

4.8.2 Grade Control Drilling

A grade control pattern of 10 m by 10 m using 30 m holes with assay samples collected over a 1 m interval for one assay is included in the cost model.

Provision for Service Equipment

A range of service support equipment has been included as listed below:

- Rock breaker x 1.
- Fuel and Lube Truck x 1.
- Water Truck x 2.
- Lighting Towers x 8.

4.8.3 Light Vehicles

Four-wheel drive light vehicles were included in the mining study for the owner's team management supervisory roles. The allocation of four-wheel drive vehicles is given in Table 4.10.

Mining Management	Single Cab Utes	Twin Cab Utes	Land Cruiser Wagon	Total
Operations Manager			1	1
Technical Services Superintendent			1	1
Mining Engineer – Production			1	1
Mining Engineer – Drill & Blast			1	1
Senior Geologist			1	1
Mine Geologist		1		1
Senior Mine Surveyor		1		1
Mine Surveyors				
Field Technicians		1		1
Mine Operations Superintendent			1	1
Mining General Supervisor		1	-	1
Total	0	4	6	10

Table 4.10Light Vehicle Provision

Table 4.11 Summary of Contractor Mining Fleet

Page 46

Major Equipme	nt	Total	YR-1	YR1	YR2	YR3	YR4	YR5	YR6	YR7	YR8	YR9	YR10
Blast Hole Drill	Atlas T45 or Similar	1	-	-			-						
Grade Control Drill	Atlas D65 or Similar	9	5	-		1	-	,		,			
Hydraulic Excavator 180t (Waste, 9.5m3)	Liebherr R9250 Excavator	2	-		-						,		
Hydraulic Excavator 120t (Ore, 4m3)	Liebherr R9150 Excavator	2	-			+		,	,	,	,		
Haul Truck, 90t	Caterpillar 777D	18	8	4	з	з	ı	ı		ı	ı	ı	
Tracked Dozer, ?ft blade, 370kW	Cat D9R Dozer	5	4	·	ı	-	ı	ı		I	ı	ı	
Wheeled Dozer, 15ft blade, 400kW		I											
Hydraulic Excavator/ Rockbreaker 40t	Cat 336E Excav / breaker	-	~		ı	ı	ı	ı		ı	ı	ı	
Motor Grader (16ft)	Cat 16M Grader	2	2								,		
Front-End Wheel Loader (5.4m3)	CAT 988	-	~		ı	ı	ı	ı		ı	ı	ı	
30,000 litres Water Truck	Cat 777D WT	-	-					,	,	,	,		
Service Truck	TBA	3	с								,		
Hiab Truck	TBA	-	-					,	,	,	,		
Front-End Wheel Loader	Cat 966G FEL		2								,		
Lighting Plants	TBA	14	8	4		2	-	ı	,	,			•
Tool Handler	Cat 966 FEL- tyre handler	1	1	-			-	ı	,				
Tool Handler	Cat IT28 Integrated Tool	1	1	-			-	ı	,	,			•
Crane	80t Workshop Crane (mobile)	1	1	-			-				-		•
Light Vehicles	TBA	18	18	-			-				-		-
Mobile Crusher	TBA	1	1	1	I	I	I	ı	ı	ı	ı	ı	
Pit De-watering Pumps	TBA		1	ı	I	I	I	ı	ı	I	ı	ı	ı
Total Units													

1953/17.04/1953-000-GEREP-0001_C

4.8.4 Explosives Supply

A bulk manufacturing facility and a mobile manufacturing unit will be supplied by an experienced explosive services provider.

A supply and storage site will be established on the mine from where the bulk explosives service will be managed. The site will consist of a storage facility for chemicals, emulsion manufacturing facility and explosives magazine complex. A maintenance workshop, ablution and change house, offices and magazine will form part of the start-up phase and will be provided by KEFI.

The raw materials will be supplied with Explosives and Initiating systems being sourced from South Africa or Zambia. KEFI will perform the site preparation while the civil construction will form part of the construction phase of the mine, which will be completed by the contractor.

4.8.5 Pit Dewatering and Drainage

Water entering the pit will be discharged into the raw water diversion dam. Portable pit dewatering pumps capable of delivering 7 ML per day at 150 m total head and associated discharge lines will be supplied by the Contractor.

During operations the size of the pit will increase resulting in an increased catchment and ground water inflow potential. Additional pumps will be provided by the Contractor to cover for this increased inflow as well as the increase in head resulting from deepening of the pit.

Water inflows exceeding 7 ML/day will be managed by the Contractor at an additional cost in the pricing schedule.

4.9 Mining Personnel

In order to effectively manage the operations at Tulu Kapi, a labour schedule was drawn up to include labour for mining, processing and administrative duties as part of the 2015 DFS.

4.9.1 Owner's Mining Department Personnel

With the revised strategy of contract mining operations rather than owner operator mining, the Owner's Mining Department labour schedule was revised.

Mine management for the Tulu Kapi mine will be headed by a general manager who will be supported by departmental managers as shown in Figure 4.13. The duration of service required from the expatriate before he is replaced by a national counterpart is also indicated.

Some management positions will require expatriates for the life of mine and some will only require expatriates for the first few years of operation, after which they will be handed over to a trained Ethiopian national. A national worker, trained under the guidance of an expatriate, will receive hands-on training in that specific role and will be able to replace the expatriate within a specified time.

Table 4.12 shows a list of positions that will be held by expatriates. Expatriate 1 position will be held by highly experienced expatriates with senior management experience in Africa, Expatriate 2 positions will be expatriates with technical or supervisory experience in Africa.

Position	Job Grade	Source	Number	Duration (years)
Operations Manager	E4	Expat 1	1	>3
Mine Administrative Assistant	C1	Local	1	
Technical Services Superintendent	D4	Expat 1	1	3
Mine Operations Superintendent		Expat 2	1	3
Deputy Mine Operations Superintendent		National	1	
Mining General Supervisor		National	1	
Mine Technical Services Clerk	B1	Local	1	
Reporting Clerk	B1	Local	0	
Senior Mining Engineer	D4	Expat 1	1	3
Mining Engineer - Production	D2	Local	2	
Mining Engineer - Drill and Blast	D2	Local	2	
Senior Mine Geologist	D4	Expat1	1	3
Mine Geologist		Expat 2	1	3
Mine Geologist	D1	Local	2	
Senior Mine Technician	B4	Local	1	
Mine Technician/Sampler	B1	Local	4	
Senior Mine Surveyor	D2	Local	1	
Mine Surveyor	C4	Local	3	
Survey Assistants	B1	Local	3	
Database Administrator	C3	Local	1	
Total Mine			29	

Table 4.12Owners Labour Schedule

Page 49

1953/17.04/1953-000-GEREP-0001_C

4.9.2 Contract Mining Personnel

It is anticipated that the majority of the Tulu Kapi mine's workforce will be sourced locally and it is KEFI's policy to maintain this practice to the fullest extent possible, with only key management and supervisory personnel sourced outside the country. It is likely that a large contingent of employees will be sourced from the Tulu Kapi, Gimbi, Ayra and Nekemte villages and towns. The development of skills required to operate a gold mine will be fostered by KEFI. There appear to be no constraints regarding access to a pool of unskilled and semi-skilled labour and the future development of a skills base in the region.

A basic schedule for manpower as provided by the preferred contractor is outlined in Table 4.13

Position	Status	Y -1	Y 1	Y 2	Y 3	Y 4	Y 5	Y 6	Y 7	Y 8	Y 9	Y 10
Western Expatriates	Expat 1	5	5	5	5	5	5	5	5	3	3	3
African Expatriates	Expat 2	18	12	12	12	12	12	12	12	8	8	6
National Staff and Supervision	Local	39	39	52	52	52	52	52	52	52	52	52
National Operators - Drilling	Local	7	9	13	15	15	9	7	5	1	0	0
National Maintainers - Drilling	Local	7	9	12	12	12	9	7	7	4	0	0
National Operators - Blasting	Local	8	11	16	19	19	11	8	8	3	0	0
National Maintainers – Bits / Hammers	Local	4	4	4	4	4	4	4	4	4	4	0
National Operators – Mining	Local	40	84	92	96	100	96	112	116	80	64	11
National Maintainers - Mining	Local	31	65	72	76	80	77	93	97	61	47	6
Subtotal - Mine Operations		160	159	238	278	291	299	275	300	306	216	178

 Table 4.13
 Mining Contractor Labour Schedule

4.9.3 Explosives Contract Mining Personnel

A basic schedule for manpower as provided by the contractor is outlined in Table 4.14.

It is anticipated that initially the skilled personnel will be sourced nationally and the semi-skilled and un-skilled will be sourced locally.

Operations	Skills and Qualifications	Number of Personnel	Task
Site Manager (Full time expat)	Skilled	1	Overall responsibility for safe management of the onsite operation, daily liaison, basic blast design, inventory management, site administration
Plant Foreman	Skilled	1	Responsible for safe manufacturing of emulsion, plant supervision, plant management, raw materials management, production. Environmental responsibility; Relief Site Manager.
Operations Assistants -Plant D/S	Unskilled	6	AN handling, forklift operations, housekeeping, assisting hydraulic fitter where necessary.
Bench Foreman	Semi-Skilled	1	Manages and organizes on bench operation, reconciliations and customer documentation.
MMU Operator	Semi-Skilled	1	Safe operation of MMU, delivery of quality product down-the-hole; charging data records.
Operations Assistants -on bench	Unskilled	4	Hose handling, cup sampling, assisting hydraulic fitter where necessary.
Technical Support			
Hydraulic Fitter	Skilled	1	Maintenance of emulsion plant and MMU process, including all safety systems, pumps, boilers, compressor, augurs, motors, PLCs etc.
Total		15	

4.10 Mining Operating Cost

4.10.1 Basis of Estimate Mine Operating Cost

The total mine operating costs, based on a contractor operated scenario, was estimated to be US\$441 million for the life of mine, which excludes pre-production costs and sustaining capital discussed in the section on Capital Cost Estimate in this report. Based on a total material movement of 130 million tonnes the unit operating cost was estimated to be \$3.40 per tonne. This compares to the 2015 DFS owner operator mining cost estimate of \$2.68, the key difference being the amortisation of capital equipment now carried in the contractor's unit cost. Figure 4.14 provides a summary of the distribution of mine operating costs over the life of mine.

Figure 4.14 Distribution of Mine Operating Costs

The mine operating costs are summarised in Table 4.15 with the operation of the mining and ancillary equipment being the largest of the cost areas. A bottom up, first principles approach was used as the basis of estimating the operating costs for the open pit mining operations. The costs were compiled from a variety of sources including:

- Labour salary survey for the Tulu Kapi project.
- Non-binding budget quotations from mining contractors.
- Non-binding budget quotations from explosive suppliers.
- Vendor quotations specific to the project.
- Database costs for similar projects.

Item Description	LOM Estimated Value	Cost/Mined Tonne
	(US\$)	(US\$/t)
Mining Infrastructure	3,156,990	0.02
Mobilisation / Demobilisation	4,235,465	0.03
Load and haul	170,150,099	1.31
Drill and blast	43,824,517	0.34
Fixed Costs	51,751,221	0.40
Daywork Provision	6,289,810	0.05
Capital Development (Clearing, Waste Dump, ROM pad, Haul Road, Emulsion, Magazine, Borrow)	4,345,775	0.03
Mining Infrastructure	690,873	0.01
Subtotal Mining Costs	284,444,750	2.19
Mining Contractor Infrastructure Deferred Cost Adjustment	8,753,312	0.07
Owners Cost	148,048,312	1.14
Total Cost	441,246,375	3.40

Table 4.15 Mine Operating Cost Summary

Drill and blast and load and haul are the predominant cost drivers. These costs include lubricants, spares, tyres, ground engaging tools, general maintenance and cost of onsite labour for operator and maintenance as supplied by the contractor. Fuel is also allowed for but will be a direct cost to KEFI. Fuel will be dispensed from a facility owned by the fuel supply contractor at a cost of \$0.72 per litre.

4.10.2 Mine Owner's Labour Costs

Mine department owner's team labour will comprise expatriates, national and local labour. The expatriate labour category refers to labour sourced outside of Ethiopia. This category is split into two types; Expatriates 1 position which will be held by highly experienced expatriates with senior management experience in Africa and worldwide, who are most likely to be sourced from North America, Europe, RSA or Australia and Expatriate 2 positions who will be expatriates with technical or supervisory experience in Africa.

National labour refers to labour sourced from Ethiopia but not within the mine locale. Local labour is sourced from the communities close to the mine. The labour total costs to company were determined using the basis described below.

The mine expatriate labour cost includes the following:

- Labour remuneration.
- Ethiopia in-country taxation.
- Vacation / sick leave.

- GPA and illness insurance.
- Social insurance.
- Airfares.
- Social security.

The following costs have been excluded as they have been included in the G&A operating costs:

- Camp food and catering costs.
- Safety supplies costs.
- Training costs.
- Consultants' fees.

Mine operations and supervisory staff will work on a 3×8 hour shift per day, 7 days a week. Management and technical staff will work day shifts only, but will be on standby after hours on a rotational basis.

Management and technical staff will work on a 1×8 hour shift per day, 5 days a week. Expatriates and national labour will be expected to work on a 6 weeks on and 2 weeks off cycle. During the 6 weeks on duty, the expatriates and national labour will reside in the camp facility on site. During the 2 weeks off, they will have the opportunity to return to their country / town of permanent residence, after which they will return to commence the next 6 weeks on duty.

The expatriate labour rates are based on rates that have been benchmarked against mines already operating in Africa. The national and local labour rates are based on existing KEFI rates, technical rates in the marketplace, and comparisons done based on the experience required to fill roles that are not common in Ethiopia.

The labour cost detailed breakdown is given in Table 4.16.

The Patterson grading method was used for the job grading exercise. Employees are graded according to salary scale ranging from Level A1 (lowest paid, typically labourers) to Level E (highest paid, typically senior management).

Table 4	.1	6
---------	----	---

Mine Labour Cost Breakdown

Position	Job Grade	Category	No. of Employees	Cost pp / Month	Cost pp / Annum	Total Annual Cost to Company
				(US\$)	(US\$)	(US\$)
Mine Operations						
Operations Manager	E4	Expat 1	1	15,672	188,068	249,200
Mine Administrative Assistant	C1	Local	1	1,007	12,089	15,817
Mine Technical Service Department						
Technical Services Superintendent	E3	Expat 1	1	12,538	150,455	203,123
Mine Technical Services Clerk	B1	Local	2	435	5,215	13,647
Senior Mining Engineer	D4	Expat 2	1	6,533	78,392	102,912
Mining Engineer	D2	National	4	2,283	27,398	143,383
Senior Mine Geologist	E2	Expat 1	1	10,555	126,656	173,970
Mine Geologist	D5	Expat 2	1	7,470	89,636	295,959
Mine Geologist	D1	National	2	1,939	23,273	60,899
Senior Mine Technician	B4	National	1	813	9,759	12,768
Mine Technician/Sampler	B1	Local	4	435	5,215	27,294
Senior Mine Surveyor	D2	National	1	2,283	27,398	35,846
Mine Surveyor	C4	National	3	1,566	18,787	73,738
Survey Assistants	B4	Local	3	813	9,759	38,303
Data Base Administrator	C3	Local	1	1,407	16,879	22,083
Subtotal - Technical Services and General Management			27	65,748	788,980	1,468,941
Mine Operations						
Mine Operations Superintendent	D4	Expat 1	1	6,533	78,392	114,846
Deputy Mine Operations Superintendent (Training)	C5	National	1	1,743	20,910	27,357
Mining General Supervisor	D2	National	1	2,283	27,398	35,846
Total Mine Labour			30	65,748	788,980	1,468,941

4.10.3 Mining Overhead

Provision was made within the estimate for operating costs associated with the KEFI owner's mining team. The costs cover for the following expenses:

- Fuel for owner's team light vehicles.
- Maintenance of the owner's team light vehicles.
- Mining related software expenses.
- Sampling and surveying consumables.

4.10.4 Contractor Costs

Non-binding tender submissions were sourced by KEFI from a select number of experienced mining contractors to undertake the majority of the mining works. The pricing was sourced on the basis of selecting a preferred contractor with whom to negotiate final and binding pricing and contract terms and conditions. The works comprised a conventional mining contractor scope:

- Clearing and grubbing of surface vegetation.
- Topsoil removal and stockpiling.
- Overburden removal of waste material.
- Selective mining of ore.
- Drilling and blasting of rock.
- Reverse circulation grade control drilling.
- Loading the primary crusher with ore from the ROM pad.
- Dewatering the pit excavation.
- Maintenance of roads.
- Shaping and rehabilitating waste dumps.
- Management and supervision of the plant and equipment.
- Maintenance of the Contractor's plant and equipment.
- Various miscellaneous works required by KEFI under day work.

An extensive pricing schedule was completed by the tenderers and a preferred contractor was selected on contract value and experience. A summary of the preferred contractor's cost burden on the project is provided in Table 4.15 above.

In addition to the mining service contract non-binding budget proposals were sourced from an experienced explosive supplier and service provider who operates in a variety of countries throughout the African continent. The scope of the explosive services is as follows:

- Build, operate and maintain an onsite emulsion storage and where applicable manufacturing facilities.
- Build and operate an onsite explosive magazine facility.
- Issue explosives to the mining contractor for use in priming and initiating blast holes.
- Supply of emulsion product into the blast hole via a Mobile Processing Unit (MPU).

The explosive services were quoted on a fixed and variable basis. The fixed costs are included in the contractor fixed charges shown in Table 4.15 above. The variable charges for explosive product are included under the drill and blast costs in Table 4.15.

All contract charges are exclusive of import duties, withholding taxes, excise and surtax.

5.0 METALLURGICAL TESTWORK

5.1 Introduction

Test work has been carried out since 2011 for the Tulu Kapi Gold Project involving the processing of ore mined from open pit, on both oxide ore and fresh ore. The programs completed were:

- 2011 PFS (Pre-feasibility Study) to establishing the basic flowsheet and effect of different conditions and parameters.
- 2012 DFS (Definite Feasibility Study) to confirm gold recovery efficiencies through a combination of gravity separation and cyanidation leaching as well as establishing tailings detoxification parameters and additional comminution testwork to support the process design parameters for a conventional gold recovery plant.

During the 2015 DFS no further testwork was carried since previous testwork had already established the optimum process routes and parameters for gold extraction.

Following the 2015 DFS and the engagement of Lycopodium Pty Ltd as the preferred contractor for the construction of the processing plant, Lycopodium completed a Front End Engineering Design Study (FEED) in mid 2016. The study was for the design and construction of an integrated processing facility for the Tulu Kapi Gold Project to treat a nominal 1.5 Mtpa of oxide and fresh ore (vs 1.2 Mtpa used as the basis for the 2015 DFS).

The FEED study undertook a detailed review of past metallurgical testwork samples, as well as the supervision and confirmation of the comminution circuit design based on the different ore blends to be treated during the open pit Life of Mine (LOM) operations.

Results of previous metallurgical studies are not fully repeated in this document. Detailed results can be found in the 2015 DFS Appendices.

The results of the testwork from both the PFS and the DFS campaigns indicated the following:

- The oxide and transitional ores are of medium hardness and fresh ore becomes harder with increasing depth.
- All the ore types (oxides and fresh) are amenable to gold extraction by conventional cyanidation.
- Recovery testwork with and without gravity separation showed that gravity separation did not significantly increase overall gold recovery and gold. Therefore ROM cyanidation was the selected process route.

5.2 Variability Testwork and Grind Size Optimisation

Upon completion of the 2015 DFS KEFI opened the bidding process for the construction of the process plant and the operation of the mine.

Following discussions with several of the short listed engineering contractors, not only did it became apparent that an increase in processing plant capacity from 1.2 Mtpa to 1.5 Mtpa could be achieved with negligible increases in capital costs and without requiring any changes to the mine plan, but capital and operating cost reductions could also be achieved by increasing grind size from the previously chosen $P_{80} = 75 \ \mu m$ to 150 μm for the fresh ore and 125 μm for the oxide ore, with only minor loss in gold recovery.

During the 2012 DFS, 32 samples in all from various locations were subjected to specific testwork to assess variability within the ore body, including both gold recovery and comminution. These samples comprised 11 samples from geographically diverse oxide sources for grindability and extraction testwork, 16 samples from spatially diverse fresh ore sources specifically for extraction testwork, and five samples from spatially diverse fresh ore sources for both comminution variability and extraction testwork.

Oxide ore recoveries at P_{80} = 150 µm ranged between 90.5% and 98.0% for gold and 65.1% and 97.2% for silver as shown in Table 5.1 below.

Semple ID	Feed	t	Reco	veries
Sample ID	Au (g/t)	Ag (g/t)	Au (%)	Ag (%)
V-2	2.35	0.43	97.0	65.1
V-3	3.83	0.52	94.4	71.3
V-4	0.99	0.45	97.0	66.8
V-5	1.96	0.78	98.0	80.8
V-6	2.53	0.61	90.5	75.6
V-8	2.45	2.20	94.7	93.2
V-9	1.15	3.83	95.6	92.2
V-10	1.15	2.83	93.0	94.7
V-11	1.48	5.35	93.3	97.2
V-12	2.10	2.79	92.9	94.6
Average	2.00	1.98	94.64	83.2

Table 5.1 Oxide Ore Au and Ag Variability Results at 150 µm

ALS AMMTEC Report A8865 – Metallurgical Testwork Programme June 2012

Soft fresh ore recoveries at P_{80} = 150 µm ranged between 88.1% and 97.0% for gold and 38.4% and 85.5% for silver as shown in Table 5.2 below.

Committee ID	T4 N-	Fee	d	Reco	veries
Sample ID	Test No	Au (g/t)	Ag (g/t)	Au(%)	Ag (%)
V-1	BK694	1.31	0.90	95.80	66.5
V-2	BK695	1.56	0.60	96.79	75.1
V-3	BK696	2.95	1.45	96.95	58.6
V-4	BK697	2.44	1.09	91.79	63.4
V-5	BK698	3.07	1.02	94.13	85.3
V-6	BK699	1.61	1.05	93.18	52.3
V-7	BK700	1.72	2.92	95.94	38.4
V-8	BK701	2.77	1.00	96.03	85.5
V-17	BK710	1.34	0.60	88.09	73.7
V-18	BK711	1.46	0.50	92.47	71.2
Average		2.02	1.11	93.1	67.0

Table 5.2	Soft Fresh Ore Au and Ag	g Variability Results at 150 μm
-----------	--------------------------	---------------------------------

ALS AMMTEC Report A8865 – Metallurgical Testwork Programme June 2012

Hard fresh ore recoveries at P_{80} = 150 µm ranged between 75.6% and 97.3% for gold and 44.3% and 88.3% for silver as shown in Table 5.3 below.

Table 5.3Hard Fresh Ore Au and Ag Variability Results at 150	μm
--	----

Sample ID		Feed		Recoveries	
	Test No	Au (g/t)	Ag (g/t)	Au (%)	Ag (%)
V-9	BK702	1.94	0.80	95.36	81.7
V-10	BK703	1.29	0.60	93.80	75.8
V-11	BK704	1.87	1.30	91.95	69.7
V-12	BK705	3.38	1.30	97.34	88.3
V-13	BK706	2.47	1.20	94.13	87.2
V-14	BK707	1.94	2.20	89.69	45.2
V-15	BK708	0.93	0.40	92.44	65.5
V-16	BK709	1.60	0.60	89.99	73.7
V-19	BK712	1.40	0.40	95.72	63.8
V-20	BK713	2.05	0.60	96.11	74.7
V-21	BK714	0.37	0.30	75.88	44.3
Average (sample V-21 n	1.89	0.94	93.7	72.6	

ALS AMMTEC Report A8865 – Metallurgical Testwork Programme June 2012

Leaching testwork based on a P_{80} = 75 µm grind size was also performed. The difference in solid tails gold assay between the two different grind sizes indicates that only a small improvement in recovery can be expected in the majority of the cases by a finer grind.

Tables 5.4 to 5.6 below highlight the difference in the oxide ore residue grades between 75 and 150 μ m grind sizes using the same variability samples under identical test conditions.

	Au Head Grade			Au Solids Tail	Au Solids Tail	
Sample ID	A	Calculated		Grade	Grade	∆Au Solids Tail Grade
	(g/t)	75 μm (g/t)	150 μm (g/t)	75 μm (g/t)	150 μm (g/t)	(g/t)
V-2	3.23 / 3.27 / 5.44	2.24	2.35	0.075	0.07	-0.005
V-3	3.96 / 3.34 / 3.53	3.97	3.83	0.18	0.22	0.035
V-4	0.79 / 1.02 / 0.75	1.15	0.99	0.01	0.03	0.02
V-5	1.79 / 1.88 / 1.98	1.86	1.96	0.03	0.04	0.01
V-6	2.40 / 2.78 / 2.09	1.85	2.53	0.1	0.24	0.14
V-8	2.49 / 3.10 / 3.42	2.68	2.45	0.05	0.13	0.08
V-9	0.83 / 1.04 / 1.33	1.48	1.15	0.05	0.05	0
V-10	1.14 / 0.99 / 1.20	0.94	1.15	0.04	0.08	0.04
V-11	1.45 / 1.14 / 1.05	4.09	1.48	0.28	0.10	-0.18
V-12	1.59 / 2.33 / 3.45	2.00	2.10	0.055	0.15	0.095
Average		2.23	2.00	0.09	0.11	0.024

Table 5.4 Au

Au Solids Tail Grade Comparison for Oxide Ore

ALS AMMTEC Report A8865 – Metallurgical Testwork Update August 2012

Table 5.5	Au Solids Tails	Grade Comparison	for Soft Fresh Ore
1 4010 0.0	Au Conus Tana	orade companison	

	Au Head Grade			Au Solids Tail	Au Solids Tail	
Sample ID	Assay (g/t)	Calculated		Grade	Grade	ΔAu Solids Tail Grade
		75 μm (g/t)	150 μm (g/t)	75 μm (g/t)	150 μm (g/t)	(g/t)
V-1	1.50 / 1.30 / 0.88	1.01	1.31	0.04	0.06	0.015
V-2	1.25 / 1.52 / 1.38	1.52	1.56	0.06	0.05	-0.01
V-3	2.24 / 2.49 / 2.62	2.57	2.95	0.13	0.09	-0.04
V-4	2.40 / 2.30 / 2.91	2.39	2.44	0.14	0.20	0.06
V-5	1.97 / 2.61 / 2.50	2.69	3.07	0.12	0.18	0.06
V-6	1.36 / 1.38 / 1.26	1.93	1.61	0.07	0.11	0.04
V-7	1.24 / 1.73 / 2.66	1.53	1.72	0.05	0.07	0.02
V-8	1.37 / 1.45 / 2.81	2.04	2.77	0.11	0.11	0
V-17	1.44 / 1.76 / 1.22	1.34	1.34	0.06	0.16	0.1
V-18	1.29 / 1.03 / 1.13	1.14	1.46	0.06	0.11	0.05
Average		1.82	2.02	0.08	0.11	0.030

ALS AMMTEC Report A8865 – Metallurgical Testwork Update August 2012

	Au Head Grade			Au Solids Tail	Au Solids Tail	
Sample ID	Assay (g/t)	Calculated		Grade	Grade	ΔAu Solids Tail Grade
Sample ID		75 μm (g/t)	150 μm (g/t)	75 μm (g/t)	150 μm (g/t)	(g/t)
V-9	1.96 / 2.08 / 2.20	2.38	1.94	0.06	0.09	0.03
V-10	1.34 / 0.40 / 1.24	1.34	1.29	0.07	0.08	0.01
V-11	1.22 / 1.33 / 0.94	1.43	1.87	0.13	0.16	0.025
V-12	2.19 / 1.24 / 1.39	4.60	3.38	0.06	0.09	0.03
V-13	2.02 / 2.67 / 2.35	1.90	2.47	0.06	0.15	0.085
V-14	2.42 / 2.47 / 2.18	1.94	1.94	0.16	0.20	0.04
V-15	1.16 / 0.95 / 4.01	1.29	0.93	0.05	0.07	0.02
V-16	1.66 / 1.76 / 1.93	2.20	1.60	0.08	0.16	0.08
V-19	1.42 / 1.14 / 1.34	1.49	1.40	0.05	0.06	0.01
V-20	3.44 / 3.49 / 3.22	2.27	2.05	0.11	0.08	-0.03
V-21	0.50 / 0.38 / 0.54	0.52	0.37	0.17	0.09	-0.08
Average		1.94	1.75	0.09	0.11	0.020

 Table 5.6
 Au Solids Tail Grade Comparison for Harder Fresh Ore

ALS AMMTEC Report A8865 – Metallurgical Testwork Update August 2012

The above tests were performed with gravity separation; separate tests demonstrated that gravity separation did not significantly increase overall gold recovery.

The metallurgical results indicate gold recovery is relatively insensitive to grind size and any gold recovery benefits derived from finer grinding are not economically supported due to increases in capital (grinding mill size / power) and operating costs of the optimised circuit design.

No slurry handling difficulties are anticipated at the relatively coarse grind P_{80} of 150 µm and many process plants operate at this grind size.

Based on the testwork and input from engineering companies to capitalise on the opportunity to decrease initial capital cost, the optimum grind size for the FEED was established as being $P_{80} = 150 \ \mu m$.

5.3 Refinements to the Recovery Model

The metallurgical factors and the grade recovery algorithms for the 2015 DFS were developed by SENET and reviewed by Snowden. Metallurgical recoveries were applied to the Snowden optimisation, Snowden production schedule and KEFI's 2015 DFS financial model. For the 2015 DFS overall recovery over LOM was estimated to be 91.5% based on a P_{80} = 75 µm.

Micon International Limited (Toronto, Canada) reviewed the metallurgical testwork as part of their review of the 2015 DFS and concluded that the grade-recovery algorithms used in the DFS were conservative. In generating the recovery versus head grade equations for the different ore lithologies (Oxide, Soft and Hard Fresh ore) presented in the 2015 DFS at 75 µm grind sizes,
several samples were discarded as being anomalous and MICON disagreed with the approach of disregarding the selected samples.

Based on their review they concluded that a gold recovery upside of an additional 2% above the 91.5% used in the DFS would not be unreasonable.

Further investigations with the aim of developing grade recovery algorithms that could be used in financial modelling used the testwork results from AMMTEC reports A14136 – Fresh Ore and A14207 – Oxide Ore as the basis of the analysis.

The algorithms for the coarser grind of 150 μ m as applied to FEED were generated without discarding samples as was done in the 2015 DFS. The results in Figure 5.1 show that there appears to be a low to medium level correlation between the residue grade and the head grade for the oxide ore and the equation was as follows:

Figure 5.1 A14207 – Oxide Ore - Testwork Head Grade vs Residue Grades

Gold dissolution, % = (<u>Head Grade- (0.0414 * Head Grade</u>)^ 1.3456)*100, Head Grade

This equation (which gives a $R^2 = 0.6515$ correlation to the data shown) was then used to determine the predicted gold dissolution which was plotted against the test work gold dissolutions as shown in Figure 5.2. The results show that there was no relationship between the predicted and testwork gold dissolutions.

On the basis of these results the average gold dissolution as shown in Table 5.1 of 94.0% was used for the oxide ore.

Figure 5.2 A14207 – Testwork Gold Dissolution vs Predicted Dissolution – Oxide Ore

The Fresh Ore was not categorised into either 'Soft Fresh' or 'Hard Fresh' ore in the test reports. Consequently, all data had to be grouped together. The results for the fresh ore are given in Figure 5.3.

The results in Figure 5.3 do not show any discernible relationship between the residue grade and the head grade. An attempt was made to develop a relationship between the gold dissolution and the head grade and the results are shown in Figure 5.4.

From the results in Figure 5.4, no strong correlation between head grade and gold dissolution relationship could be established; however the data appeared to consist of possibly three groups as shown in Figure 5.5.

Figure 5.5 A14136 Testwork Head Grade vs Gold Dissolution – Grouped

Based on the results presented in Figure 5.6, it was possible to develop useable head grade gold dissolution relationships which were as follows:

Series 1	Gold dissolution, % = 82.55 + 4.383 * Head Grade,	$R^2 = 0.854$
Series 2	Gold dissolution, % = 83.24 + 6.260 * Head Grade,	R ² = 0.997
Series 3	Gold dissolution, % = 88.12 + 5.092 * Head Grade,	$R^2 = 0.723$

The predicted gold dissolutions were plotted against the test gold dissolutions as shown in Figure 5.6 and the results show a good correlation between the testwork and predicted gold dissolutions. Further analysis of the geological and/or mineralogical factors should be conducted to determine whether or not these groupings can be supported.

Based on the foregoing analysis, for the fresh ore, the Series 1 gold dissolution relationship was used as this is the most conservative. For the hard fresh ore a further 1% discount was applied in the financial model. Hence the following was applied in the financial model:

Oxide Ore:	Average recovery of 94%
Soft Fresh Ore:	Gold dissolution, % = 82.55 + 4.383 * Head Grade
Hard Fresh Ore:	(Gold dissolution, % = 82.55 + 4.383 * Head Grade)*0.99

The resultant algorithms result in average recoveries over the LOM as shown in Table 5.7.

Table 5.7 Average Gold Recovery for Different Ore Types Based on the LOM Schedule

Ore Type	Recovery	Percent Processed
Oxide Ore	94.0%	6%
Fresh Ore	92.85%	66%
Fresh Hard Ore	94.12%	28%
Average	93.33%	100%

5.4 Optimisation of Grinding Circuit Configuration

Orway Mineral Consultants (OMC) selected a grinding circuit based on the anticipated mining schedule, predicted ore hardness and selected grind size. A single stage SAG mill (SS SAG) was recommended. The comminution circuit could be expanded later to include a ball mill for treatment of harder fresh ores to maintain throughput rates, if required. The optimum grind size at that time would be selected using operational data, and additional testwork data to drive the selection of the ball mill according to the power requirements to reach the target grind size.

Further investigations by OMC during FEED suggested that an initial larger SAG mill installation would not require any further circuit upgrades in the future. Nevertheless, the FEED incorporated the capability of expanding the milling circuit if required.

OMC provided indicative specific energy requirements for each comminution sample tested to enable the resource modelling to account for the hardness profile with increased accuracy.

Previously the hardness interface was set at 1,600 mRL, which resulted in a significant jump in the specific energy requirements after Year 4. The following Figure 5.7 shows the initial Hard / Soft interface assumption.

By applying the specific energy at each comminution sample location a more representative hardness profile was generated. To generate these values, the SPE75 values for samples tested by OMC were coded into the resource block model, based on their spatial location deposit. The coding was carried out using a simple nearest neighbour technique, so there no transition between zones of hardness. The block model was then run through the mine schedule process and the values were output (along with the processing schedule) for each time period on a tonnes weighted average basis. The result is shown in the following Figure 5.8.

Although the comminution data is relatively sparse and the profile should be treated with caution, it does show that the specific energy excursions are not as extreme as initially anticipated. Based on this data a future expansion was not justified and the initial SAG mill was sized to cope with the LOM hardness profile, realising the initial excess capacity. Hence the circuit has the capacity to treat 1.7 Mtpa for the first four years of production.

6.0 PROCESS PLANT DESIGN

6.1 Process Design

6.1.1 Design Philosophy

The proposed process plant design for the Tulu Kapi Gold Project is based on a robust metallurgical flowsheet designed for optimum recovery with minimum operating costs. The flowsheet is constructed from unit operations that are well proven in industry.

The key criteria for equipment selection are the suitability for duty over the life of the operation, reliability and ease of maintenance. The plant layout will provide ease of access to all equipment for operating and maintenance requirements while maintaining a compact footprint to minimise construction costs.

The Tulu Kapi plant will process a range of ore types (oxide, shallow / soft fresh and deep / hard fresh ores) with variable ore characteristics, gold grades and metallurgical treatment requirements. The fresh ores are harder and more competent and will be processed at a lower throughput rate.

KEFI has advised that ores will be mined so that predominantly oxide / shallow / soft fresh ore will be processed for the first 3 years, and thereafter a mixture of shallow and hard fresh ore will be processed. Oxide ore will be processed at a rate of up to 1.7 Mt/y, while fresh ore will be processed at a rate of 1.5 Mt/y using a single stage crushing and single stage SAG mill circuit.

The key project and ore specific design criteria that the plant design must meet are aligned with the process performance guarantees for:

- Fresh and oxide ore throughput.
- Milled product P₈₀ grind size.
- Soluble gold loss to CIL tails.
- Elution efficiency.
- Weak acid dissociable (WAD) cyanide discharge concentration to the TSF.

A process design criteria (1953-000-PRPDC-0001) document has been prepared incorporating the engineering and key metallurgical design criteria derived from KEFI advice, the results of metallurgical testwork and comminution circuit modelling. The process design document is included in Appendix 6.1 and forms the basis for the process and engineering design of the processing plant and required site services.

6.1.2 Selected Process Flowsheet

The treatment plant design incorporates the following unit process operations:

- Single stage crushing with a vibrating grizzly feeding an open circuit jaw crusher.
- A crushed ore surge bin. Surge bin overflow will be conveyed to a dead stockpile. Ore from the dead stockpile will be reclaimed by front end loader (FEL) (by mining contractor) to feed the mill during periods when the crushing circuit is off-line.
- A single stage semi autogenous grinding (SAG) mill in closed circuit with hydrocyclones.
- A carbon-in-leach (CIL) circuit incorporating six CIL tanks containing carbon for gold adsorption.
- A pressure Zadra elution circuit including electrowinning and gold smelting to recover gold from the loaded carbon to produce doré. Eluted carbon will be regenerated in a horizontal kiln.
- Cyanide destruction using the SO₂ / air process to produce an effluent weak acid dissociable (WAD) cyanide concentration of <50 ppm.
- Tailings pumping to and decant recovery from the tailings storage facility (TSF by others).
- Air and water services as required.
- Reagent make-up, storage and distribution facilities.

A simplified flow diagram depicting the unit operations incorporated in the selected process flowsheet is shown in flowsheet 110-PRPFD-0002 included in Appendix 6.3.

The selected flowsheet has a number of changes from the 2015 DFS, specifically:

- Processing of up to 1.7 Mtpa of less competent ore with a nameplate throughput of 1.5 Mtpa. The 2015 DFS plant design throughput was 1.2 Mtpa.
- Replacement of the live coarse ore stockpile and reclaim feeders with a surge bin and "dead" stockpile. The SAG mill feed will be withdrawn directly from the surge bin, thereby addressing oxide handling issues through the stockpile. The bin will be equipped with a tipping ramp to allow reclaim from the stockpile during periods of crusher downtime.
- The adoption of a coarser P₈₀ grind size (150 μm instead of 75 μm) allowed selection of a single stage SAG mill in place of the proposed SAG / ball milling circuit. Reinterpretation of the ore hardness profile in line with the mining schedule implied no need for the proposed stage two addition of secondary crushing and screening of the mill feed. The single stage SAG mill will be fitted with a VSD to allow turndown during periods of low competency ore feed.

- The elution circuit capacity increases from 4 t to 6 t with the higher throughput. KEFI requested a change to a diesel fired heater and kiln rather than electric for improved operability and reduced maintenance.
- Quicklime dosed via the mill feed conveyor will be used in place of a hydrated lime system with wet make-up and distribution network.
- KEFI requested additional changes for the purpose of capital reduction (e.g. removal of tower crane and inclusion of a gantry crane arrangement, relocation of Administration and Mine building).

6.1.3 Plant Design Basis

The key issues considered for the process and equipment selection are outlined in this section.

Process Plant

The plant design has been based on a nominal capacity of 1.7 Mt/y of oxide ore or 1.5 Mt/y fresh ore.

ROM Pad

The ROM pad will be used to provide a buffer between the mine and the plant. The ROM stockpile will allow blending of feed stocks and ensure a consistent feed type and rate to the plant. A mobile rock breaker (by the mining contractor) will be used to break oversize rocks on the ROM pad.

The battery limit for the process plant supply and operation is feed ore delivered to the ROM bin.

Comminution Circuit Selection

Comminution data was provided to Orway Mineral Consultants (OMC) for comminution circuit modelling and mill sizing. Details of the OMC work are summarised below with full details in the OMC report 7743, July 2016 included in Appendix 6.6.

Comminution Circuit Design Basis

The Tulu Kapi ores have variable comminution characteristics but can be classified into two main groups:

- Oxides ores with typically low competency and below average grinding energy requirements and slight to moderate abrasivity.
- Fresh ores exhibiting higher competency and grinding energy requirements and which are moderately abrasive.

The Tulu Kapi mine schedule produces predominantly oxide and shallow fresh ores during the early years of operation with increasing fractions of harder fresh ores thereafter. A variable speed drive has been specified for the SAG mill to address the variability in feed ore types and blends.

The key design criteria used for modelling the comminution circuit and details of the mill size and operating parameters are summarised in Table 6.1.

6.1.4 Selected Comminution Circuit

Crushing Circuit

The crushing circuit has been sized for a feed rate 30% above that of the fresh ore milling throughput, so that crusher downtime for maintenance does not affect overall mill operating time. Excess crushed ore will be stockpiled and reclaimed via the crushed ore surge bin during periods of crusher downtime to provide constant feed to the mill.

A fixed grizzly will be installed on the ROM bin to minimise oversize material entering the bin and causing down-stream blockages.

A variable speed apron feeder will withdraw ore from the base of the ROM bin and feed a vibrating grizzly. Vibrating grizzly oversize will be directed to the jaw crusher and undersize will report directly to the crusher discharge conveyor, bypassing the jaw crusher and thereby reducing the load and wear on the jaw crusher.

Occasional dozing of the crushed ore stockpile (by the mining contractor) will be required, using the mine equipment, to create additional storage capacity.

Parameters	Condition	Units	Value
CWi		kWh/t	8.2 – 12.9
BWi		kWh/t	15.5 – 18.0
RWi		kWh/t	11.3 – 19.7
Axb		-	112 - 39
Milling Feed F ₈₀		mm	122
Milling Product P ₈₀ (fresh ore)		μm	150
Mill Specific Energy (fresh ore)	@ P ₈₀ 150µm	kWh/t	17.7
Mill Pinion Power (fresh ore)	Nominal	kW	3320
Grinding Circuit Throughput	Nominal	t/h	188 - 213
	Nominal	Mt/y	1.5 – 1.7
Mill Pinion Power	Nominal Max	kW	4370
Mill Installed Power		kW	4500
Mill Diameter		m	6.7
Mill EGL		m	6.2
Mill Dia x EGL		ft x ft	22 x 20.3
L:D Ratio			0.93
Discharge Arrangement			Grate
Speed	Nominal	% Nc	75
	Range	% Nc	60 - 80
Liner Thickness	New	mm	100
Milling Density		% solids	75
Ball Charge	Nominal	% vol	11
	Maximum	% vol	16
Total Load	Nominal	% vol	25
	Maximum	% vol	35
Pinion Power	Nominal	kW	3320
	Maximum	kW	4370
Installed Power		kW	4500

Table 6.1 Summary of Comminution Indices and Selected Milling Circuit Design

Note: SAG mill motor sized for 80% Nc, 16% ball charge, 35% mill load.

Milling and Classification

A single stage SAG milling circuit has been selected to grind crushed product to the nominated circuit P_{80} size.

The SAG mill will be configured as a grate discharge mill. The mill will be equipped with a variable speed drive. Pebble crushing is not included or required, but space will be made available in the layout to install a pebble crusher in the future if required.

The classification cyclones will be operated at a moderate overflow density to provide a slurry solids concentration suitable for CIL leaching. The cyclone overflow will report to CIL via the trash screen. As a result, pre-leach thickening is not required.

Leach and Adsorption Circuit

Metallurgical testwork indicated that:

- the Tulu Kapi ores show mild 'preg-robbing' characteristics
- the tested leach kinetics for both the oxide and fresh ores indicate that the majority of gold will be leached within 24 hours.

On this basis, a circuit configuration comprising six leach tanks with carbon in all stages (CIL) to recover the dissolved gold has been selected. Six CIL stages will achieve acceptable stage efficiencies and target solution tails grades. The tanks will be identical in size with cyanide added to the first CIL tank and to subsequent CIL tanks as required. Air will be sparged to all tanks to oxygenate the slurry and to maintain adequate dissolved oxygen levels for leaching in the CIL tanks.

Elution

The average daily movement of carbon has been calculated based on the design feed grade and maximum CIL gold extraction.

Cyanide Destruction

An SO₂ / Air cyanide destruction step on the CIL tailings will be provided to detoxify CIL tailings to a nominal CN_{WAD} level of <50 ppm. Two cyanide destruction reactors with the facility to operate in series or parallel have been included to provide a robust and flexible treatment scheme. While it is not expected that pH adjustment of the reactor products will be required, the ability to dose caustic soda will be provided to enable pH control if required.

Water Supply

Water for the project will be collected from rainfall and associated surface runoff and stored in a raw water diversion dam (by others). Raw water from the dam will be pumped to the plant raw water storage tank to provide raw water services. The dam supply will also be used for process water make-up.

TSF decant return water will be recycled to the process water tank.

6.2 Process and Plant Description

The process and plant description should be read in conjunction with the process plant flowsheets provided in Appendix 6.3 and the process plant general arrangement drawings provided in Appendix 6.5. The mechanical equipment list and the electrical load list are also appended in Appendices 6.2 and 6.4, respectively.

6.2.1 Run-of-Mine (ROM) Pad

Haul trucks operating directly from the pit will deliver ROM ore to the ROM pad where it will either be dumped in blending 'finger' stockpiles arranged by ore gold grade and lithology or dumped directly into the ROM bin to feed the crusher. A FEL will be used to reclaim and tram ore from the various stockpiles to the ROM bin. Ore will be blended under the guidance of mine geologists and process personnel to maintain a relatively constant feed blend to the process plant.

6.2.2 Crushing Circuit

A static grizzly fitted to the ROM bin will protect the downstream equipment from oversize material and minimise the likelihood of chute blockages. A mobile rock breaker (by mining contractor) will be utilised to break oversize rocks as required.

ROM ore will be drawn from the ROM bin at a controlled rate by a variable speed apron feeder to feed a vibrating grizzly feeder. The grizzly oversize will report to the jaw crusher. The grizzly undersize and jaw crusher discharge will gravitate to the primary crushing discharge conveyor (CV-01) which will feed the surge bin. A weightometer on CV-01 will indicate the instantaneous and totalised primary crushing tonnage.

Water sprays will be installed for dust suppression at the tip bin. Raw water will supply the sprays to ensure no cyanide carryover to uncontaminated areas.

The crushing circuit will be controlled to an operator input feed setpoint. The ROM pad FEL driver will ensure feed is maintained to the crushing circuit and will communicate with the crushing operator using a two way radio to supply information on crusher feed operation. The speed of the apron feeder will be adjusted by the crushing operator as required.

If the jaw crusher is shut down or there is a shortfall in feed from the ROM pad, the ROM pad FEL will move to reclaim crushed ore from the crushed ore stockpile to feed the mill via the surge bin.

Coarse spillage in the primary crushing area will be cleaned up by a FEL / bobcat and loaded into the circuit via the ROM bin / surge bin depending on size. Wet spillage from the crushing area will gravitate to non-cyanide site drainage via a sediment control pond.

6.2.3 Ore Storage and Reclaim

Under normal operating conditions, the crushing rate into the surge bin will exceed the rate of withdrawal of ore to the milling circuit. Excess crushed ore will overflow the surge bin and be directed onto the conveyor feeding the crushed ore stockpile (CV-02).

Crushed mill feed will be withdrawn from the surge bin at a controlled rate by a variable speed apron feeder and fed via the mill feed conveyor (CV-03) directly to the SAG mill. A weightometer on CV-03 will indicate the instantaneous and totalised mill feed tonnage.

SAG mill grinding media will be charged via the surge bin by a FEL.

Quicklime, used for pH control in the leach circuit, will be added directly onto CV-03. Quicklime will be stored in a lime silo and will be metered onto the belt using a bin activator and a variable speed rotary feeder. The speed of the rotary feeder will be varied according to the mill feed tonnage. The operation of the bin activator will be controlled such that the activator will not run if the rotary valve is stopped. Quicklime will be delivered to site in bulk bags and transferred to the lime silo using a hoist and lifting frame to a bag breaker mounted at the top of the storage silo. The silo will be fitted with a dust collector.

Water sprays will be installed for dust suppression at the surge bin and crushed ore stockpile. Raw water will supply the sprays.

Coarse spillage in the surge bin area will be cleaned up by a FEL / bobcat and loaded into the circuit via the surge bin. Wet spillage from the surge bin area will gravitate to site drainage via a sediment control pond.

The reclaim circuit will be controlled to maintain an operator input mill feed rate setpoint and lime addition rate from the main control room. Area shift operators will also monitor operations in the field.

6.2.4 Grinding and Classification Circuit

The grinding circuit will consist of a single stage SAG mill in closed circuit with hydrocyclones. Crushed ore will be fed directly to the SAG mill. Process water will be added to the SAG mill to achieve the required milling density.

The SAG mill will discharge via a trommel into the mill discharge hopper. The slurry will be diluted with process water and pumped to the classifying hydrocyclone (cyclone) cluster for classification. Duty / standby cyclone feed pumps will be provided to facilitate maintenance with minimum disruption to mill operation to ensure high operating availability. SAG mill scats (trommel oversize) will discharge to the scats bunker and will be periodically removed by a bobcat / FEL for recycling via the surge bin.

The cyclone underflows will be collected in the underflow launder and gravitate to the SAG mill feed spout. The combined overflow stream will gravitate to the trash screen.

Cyclone overflow will be screened on a vibrating trash screen to remove any misreporting coarse ore particles, wood fragments, organic material and plastics that may become locked in the carbon circuit and 'peg' the intertank screens. The trash will report to a bin for periodic removal and disposal.

Mill load and power will be monitored to guide adjustments to mill feed, speed and other operating parameters. No higher level optimising control package has been allowed. Grinding media will be added into the SAG mill via the surge bin to assist with managing power draw.

Allowance will be made for future addition of a mill liner handler and a recoilless liner bolt removal hydraulic hammer.

The number of operating cyclones will be remotely managed to match the mill circulating load with changes in mill feed grindability. Three of the operating cyclones will be fitted with remotely actuated pneumatic inlet valves to cater for normal perturbations to the circuit operation. Major changes in circulating load or target cut-point may require changes to the base number of operating cyclones (manual valve opening). Provision for 20% spare cyclones in the cluster has been made to facilitate on-line maintenance and increased operating flexibility.

The cyclone / trash screen platform will be serviced by a davit crane.

Mill area spillage will report to a drive-in sump to allow dewatering by a sump pump with coarse spillage reclaim by FEL and recycle via the surge bin. A manual hoist will be provided to raise and lower the sump pump depending on the depth of spillage in the sump.

6.2.5 Leach and Carbon Adsorption Circuit

The trash screen underflow stream will gravitate to the CIL feed distribution box. The circuit will consist of six tanks interconnected with launders and slurry will flow by gravity through the tank train. The six tanks will operate as CIL tanks for leaching and gold adsorption onto the activated carbon.

Each tank will be fitted with a dual impeller, mechanical agitator to ensure uniform mixing and a mechanically swept woven wire intertank screen to retain the carbon. All tank launders will have bypass facilities to allow any tank to be removed from service for agitator or screen maintenance.

Quicklime added directly to the mill feed conveyor will ensure that the slurry pH is suitable for cyanidation. Sodium cyanide solution will be metered into the CIL feed distribution box with provision for staged addition to tanks 1 - 3 from a ring main system. Blower air will be distributed to all tanks and sparged down the agitator shafts to oxidise potential cyanicides and to provide dissolved oxygen for the gold dissolution reaction.

Fresh / regenerated carbon will be returned to the circuit at CIL Tank 6 and will be advanced counter current to the slurry flow by pumping slurry and carbon from CIL Tank 6 to CIL Tank 5 and so on. The intertank screen in CIL Tank 5 will retain the carbon whilst allowing the slurry to flow by gravity back to Tank 6. This counter-current process will be repeated until the carbon eventually reaches CIL Tank 1, the first adsorption tank. A recessed impeller pump will be used to transfer slurry to the loaded carbon recovery screen mounted above the acid wash column in the elution circuit. The carbon will be washed and dewatered on the recovery screen prior to reporting to the acid wash column. The associated slurry and wash water will return to CIL Tank 1.

Slurry from the last CIL tank (CIL tails) will gravitate to the carbon safety screen to recover any carbon leaking through worn screens or overflowing the tanks. Screen underflow will gravitate to the cyanide destruction feed box. Safety screen oversize (recovered carbon) will be collected in the fine carbon bin for potential return to the circuit.

Regenerated carbon returning to the adsorption circuit (CIL Tanks 5 or 6) from the carbon regeneration kiln will be screened on the carbon sizing screen to remove fine carbon and quench water. The sizing screen underflow containing carbon fines will report directly to the safety screen. Barren eluted carbon (bypassing regeneration) will report directly to CIL Tank 6.

Sump pumps at the head and tail ends of the CIL train in accessible positions adjacent to the bund wall will be used to manage any spillage from the tanks. The CIL bund floor will slope to each of these sump positions. The CIL containment bund will cater for spillage and splash, but will not be designed to hold the full volume of a tank; any significant overflows will report to the tails storage facility (via concrete trench to plant fence, then earthen trench and gravity into the TSF).

An overhead gantry crane will allow maintenance of the agitators, intertank screens and carbon transfer pumps. A spare intertank screen and maintenance bay will be provided to allow screen change-out to minimise the time for which a tank will be off-line.

The plant control room will be mounted above the CIL tanks in a central location from which most of the operations can be observed. All CIL control will be manual with a titration and sample preparation facility to allow monitoring of cyanide level and carbon concentration. Shift composite samples of CIL feed and tails will be prepared for laboratory assays.

6.2.6 Elution and Goldroom Operations

The following operations will be carried out in the elution and goldroom areas:

- Acid washing of carbon.
- Stripping of gold from loaded carbon using the Zadra method.
- Electrowinning of gold from pregnant solution.
- Smelting of electrowinning products.

The elution and goldroom areas can operate seven days per week, if required, with the majority of loaded carbon preparation and stripping occurring during day shift.

Acid Wash

Loaded carbon will be recovered on the loaded carbon recovery screen and directed to the rubber lined acid wash column. Transfer and fill operations will be controlled manually. The balance of the acid wash and the pumping sequence will be manually initiated based on timer signals.

The operator will start the acid washing sequence once the column has been filled with carbon. The acid wash solution, 3% w/w HCl in raw water, will be prepared prior to use and stored in the acid mixing / storage tank.

During acid washing the dilute solution of hydrochloric acid will be pumped into the column in an up-flow direction. After an acid soak period to remove contaminants, predominantly carbonates, from the loaded carbon, the carbon bed will be rinsed with raw water to displace any residual acid. This process improves the elution efficiency and has the beneficial effect of reducing the risk of calcium-magnesium 'slagging' within the carbon during the regeneration process.

Dilute acid and rinse water will be directed to the tailings hopper for disposal to the TSF. Acidwashed carbon will be transferred to the elution column for stripping. The acid wash column will have a partitioned area of the elution area bund, separated such that the acidic spillage cannot mix with cyanide solutions and will be separately disposed of by a dedicated sump pump.

Elution and Electrowinning

Sodium hydroxide and sodium cyanide will be metered into the strip solution tank and the tank filled with raw water. The strip solution will then be pumped through a recuperative heat exchanger and a diesel fired solution heater package before entering the base of the elution column.

The recuperative heat exchanger recovers heat from the return eluate and preheats the incoming barren strip solution. The diesel fired solution heater package raises the temperature of the incoming strip solution to approximately 120°C. A local vendor control package will control the heater firing to maintain the solution temperature.

The heated strip solution will flow upwards, in a plug flow regime, through the bed eluting gold and silver from the loaded carbon. The pregnant solution exiting the top of the column will be cooled through the recuperative heat exchanger and in the process pre-heating the incoming barren strip solution.

The pregnant solution will be further cooled by flashing it off at atmospheric pressure to allow electrowinning. Two electrowinning cells operating in parallel will be provided to ensure appropriate linear velocities through the cells. Direct current will be passed through stainless steel anodes and stainless steel mesh cathodes within the electrowinning cell and electrolytic action will cause gold in solution to form a gold rich sludge on the cathodes. The cells will contain sufficient cathodes in order to provide a high cell pass efficiency to minimise the gold tenor in the spent electrolyte returning to the strip solution tank. The elution / electrowinning cycle will continue until the solution exiting the elution column is depleted of gold and silver values.

A sulphamic acid pump will be provided to allow periodic flushing of the heat exchangers to reduce the scaling of the surfaces and maintain heat transfer efficiencies.

Goldroom

The electroplated silver and gold sludge will be removed from the cathodes by washing with high pressure water jets. The resulting slurry will be filtered in a vacuum filter with the recovered solids being dried in an oven. The sludge will then be direct smelted with fluxes in a diesel-fired furnace to produce doré bars. Slag from smelting operations will be returned to the milling circuit.

Fume extraction equipment will be provided to remove gases from the electrowinning cells, oven and barring furnace.

The goldroom building will be located inside a secure area with restricted access by authorised personnel and vehicles only. The security area will have separate personnel and vehicle access doors. Remote CCTV monitoring of goldroom activities will be in place. The building will be fresh air ventilated to maintain acceptable working temperatures.

The electrowinning cells will be located on the upper level to permit gravity solution return to the strip solution tank and sludge draining. The cells and anode support frame will be serviced by a monorail hoist. The electrowinning cell rectifiers will be located outside the goldroom building to allow monitoring of the current and voltage settings.

Carbon Regeneration

After completion of the elution process, the barren carbon will be transferred from the elution column to the carbon dewatering screen to dewater the carbon prior to entering the feed hopper of the horizontal carbon regeneration kiln. In the kiln feed hopper any residual and interstitial water will be drained from the carbon before it enters the kiln. Kiln off-gases will also be used to dry the carbon prior to entering the kiln.

The carbon will be heated to 650 - 750°C in the kiln and held at this temperature to allow regeneration to occur. Regenerated carbon from the kiln will be quenched and transferred to the carbon sizing screen. Carbon sizing screen oversize (regenerated, sized carbon) will return to the CIL circuit and screen undersize (transfer water containing some fine carbon) will gravitate to the carbon safety screen for disposal of the fine carbon in the TSF.

The carbon regeneration kiln will be located at the top of tank level. A local vendor control panel will monitor the kiln status and control the retort temperature to the target set point.

Fresh carbon will be loaded into the quench tank using the CIL gantry crane.

6.2.7 Cyanide Destruction

CIL tails will gravity flow via the carbon safety screen to the cyanide destruction feed box. The cyanide destruction feed box will also accept flows from other plant streams directed to tailings including acid rinse, acid area sump pump discharge, and plant laboratory cyanide wastes. The CIL tails stream will be designed to allow flow through two equally sized cyanide destruction reactors in either series or parallel. Sodium metabisulphite (SMBS) and copper sulphate solutions will be dosed in a controlled manner, based on the measured incoming WAD cyanide levels.

Low pressure blower air will be sparged into the bottom of each tank. The cyanide destruction reactors have been sized to allow a one hour residence time at the design CIL tailings slurry flow rate to oxidise the incoming WAD cyanide to cyanate. The ability to dose the reaction tanks with caustic soda for pH control will be provided, although it is not expected that this will be required under normal operation.

6.2.8 Tails Disposal

Cyanide destruction discharge will flow by gravity from the cyanide destruction discharge reactors to the cyanide destruction discharge pump hopper for pumping of the tailings to the TSF.

A sump pump will service the cyanide destruction / tails pumping area. Spillage will be returned to the cyanide destruction feed box.

Tailings will be deposited into the TSF.

6.2.9 Decant Return

Supernatant water will be recovered from the TSF using a pontoon mounted pump and returned for reuse in the plant.

6.2.10 Reagents

Quicklime

Quicklime will be delivered to site in one tonne bulk bags. Quicklime will be added to the mill quicklime storage silo using an electric hoist and enclosed bag breaker. Quicklime will be metered via a rotary valve directly onto the mill feed conveyor for circuit pH control. A dust collector will minimise dust emissions during loading of quicklime into the storage silo.

Cyanide

Cyanide will be delivered to site in one tonne boxes containing bulka bags of cyanide briquettes. Cyanide briquettes will be added to the cyanide mixing tank using an electric hoist and enclosed bag breaker and dissolved in process water to achieve the required solution strength of 20% w/v.

The cyanide solution will be transferred to the storage tank for use in the process. Cyanide will be reticulated to the CIL circuit via a ring main and dosed to the CIL tanks as required. A dedicated pump will provide cyanide solution to the elution circuit.

Caustic Soda

Caustic soda (sodium hydroxide) will be delivered to site in 25 kg bags of 'pearl' pellets. Caustic bags will be added by hand to the mixing tank via a bag breaker on the receiving hopper. The pellets will be discharged into the mixing tank via a manual rotary vane feeder to prevent splash back from the tank and dissolved in raw water to the required solution strength.

The caustic solution will be dosed into the elution circuit and to the cyanide destruction circuit as required.

Hydrochloric Acid

Concentrated hydrochloric acid (32% w/w) will be delivered to site in 1,000 L isotainers. The concentrated hydrochloric acid will be pumped into the acid mixing / storage tank where it will be diluted with the correct quantity of raw water to achieve the required acid wash concentration.

The dilute acid solution will be pumped to the elution circuit as required.

Sodium Metabisulphite (SMBS)

SMBS will be delivered to site in 1 tonne bulk bags of solid flake. These will be added to the SMBS mixing tank using an electric hoist and enclosed bag breaker and dissolved in raw water to achieve the required solution strength of 20% w/v. The mixed solution will be transferred to the SMBS stock tank via a transfer pump.

A ventilation fan will be provided to prevent the build-up of SO_2 gas in the tanks.

Copper Sulphate

Copper sulphate will be delivered to site in 25 kg bags. Copper sulphate bags will be added by hand to the mixing tank via a bag breaker on the receiving hopper and dissolved in raw water to the required solution strength.

Activated Carbon

Activated carbon will be delivered to site in 500 kg bulk bags. Carbon will be added directly to the last adsorption tank, as required for carbon make-up.

Grinding Media

Grinding balls will be delivered to site in 200 L steel drums. Balls will be charged to the SAG mill as required via the surge bin.

Diesel

Diesel will be delivered to site by bulk tankers and transferred to the diesel storage tank. Diesel will be pumped from the storage tank to the plant day tank for use in the strip solution heater, carbon regeneration kiln and smelting furnace. A header tank will feed the burners for the noted equipment to ensure the correct inlet pressure.

Reagents Storage

Reagents will be received on site in shipping containers, with a minimum of three months' capacity stored on site to ensure that supply interruptions due to port, transport or weather delays do not impact production. Reagent containers will be offloaded from the delivery truck by the site crane and unloaded into the designated storage areas or stacked in a lay-down area until required. Empty containers will be returned with the next delivery. A partitioned undercover reagent storage area will be provided for storage of unpacked reagents.

6.2.11 Services

Raw Water

Water will be pumped via a pontoon mounted pump from the raw water diversion dam to the plant raw water tank. The raw water tank will have sufficient capacity to minimise the impact of short term supply interruptions. Duty / stand-by water pumps will be provided for the raw water distribution in the plant.

Fire Water

Fire water for the process plant will be drawn from the raw water tank. Suctions for other water services fed from the raw water tank will be at an elevated level to ensure a fire water reserve always remains in the raw water tank.

The fire water pumping system will contain:

- an electric jockey pump to maintain fire ring main pressure
- an electric fire water delivery pump to supply fire water at the required pressure and flowrate
- a diesel driven fire water pump that will automatically start in the event that power is not available for the electric fire water pump or that the electric pump fails to maintain pressure in the fire water system.

Fire hydrants and hose reels will be placed throughout the process plant and plant offices at intervals that ensure complete coverage in areas where flammable materials are present.

Gland Water

Water from the raw water storage tank will be distributed as gland service water using duty / standby gland water pumps.

Process Water

Water will be pumped via pontoon mounted pump from the TSF to the plant process water tank. The plant process water will consist of TSF decant return water and raw water make-up. Duty / standby process water pumps will be provided for the plant process water supply.

Potable Water

Raw water will be supplied to the plant potable water treatment plant for treatment. Potable water will be stored in the plant potable water tank and will be reticulated to the site ablutions, safety showers and other potable water outlets.

Plant and Instrument Air Supply

Plant and instrument air will be supplied from duty / standby air compressors. The air will be filtered and dried before distribution with separate plant and instrument air receivers. A check valve on the instrument air supply will ensure the integrity of instrument air supply such that air from the plant air system serves as a back-up for instrument air, but plant air cannot draw down the instrument air system.

Blower Air

Low pressure air blowers will supply the CIL tank leach and the cyanide destruction reactor oxygen requirements.

6.3 Metallurgical Accounting

Weightometers will be located on the following conveyors:

- Surge bin feed conveyor will measure crushed ore tonnage.
- Mill feed conveyor will measure mill feed tonnes.

The tonnage of crushed ore reporting to the dead stockpile can be estimated from the difference between the crushed ore tonnage and the mill feed tonnes.

Routine manual sampling of the solids and solution from the leach feed stream and the final leach tails will ensure reliable composite shift samples for leach head grade and tails solution and residue grades.

Density and flowmeters on the leach feed and tailings lines will allow the dry tonnage of solids pumped to the CIL and TSF to be determined as a cross check on the mill feed tonnage determined from the mill feed weightometer. In conjunction with the leach feed and tails samples, the mass flow measurements will allow the gold recovered in the CIL to be calculated.

Regular gold 'in circuit' surveys will allow reconciliation of precious metals in feed compared to doré production.

Water supplied and used in the various areas will be continuously monitored.

Reconciliation of the amount of reagents used over relatively long periods will be achieved by delivery receipts and stock takes. On an instantaneous basis, reagent usage rates of cyanide and elution reagents and diesel flow rates to unit operations will be measured (L/min) and accumulated (m³) using flowmeters.

6.4 Process Design Criteria

Refer to Appendix 6.1 Process Design Criteria.

6.5 Mechanical Equipment List

Refer to Appendix 6.2 Equipment List.

6.6 Process Flow Diagrams (PFDs)

Refer to Appendix 6.3 Process Flow Diagrams (PFDs).

6.7 Electrical Load List

Refer to Appendix 6.4 Electrical Load List.

6.8 Site General Layout

Refer to Appendix 6. 5 Site General Layout.

Process Flow Diagrams 6.9

May 2017 Lycopodium Minerals Pty Ltd

1953/17.04/1953-000-GEREP-0001_C

7.0 TAILINGS STORAGE FACILITY AND WATER DAMS

7.1 Introduction

Epoch Resources (Pty) Ltd ('Epoch') were appointed for the 2015 DFS to compile an addendum to the 2012 DFS design of the Tailings Storage Facility (TSF). Subsequent to the 2015 DFS, KEFI engaged Increva Pty Ltd to investigate and provide an indicative estimate for an optimised TSF and Water Dam infrastructure design.

Included in the scope for this report, Lycopodium engaged the services of Knight Piésold in Perth to review the options previously investigated for the TSF and Water Dams, including but not limited to the previous designs of both Epoch and Increva. The outcome of this further investigation concluded that the conceptual design produced by Increva was viable. This was subsequently developed by Knight Piésold in order to provide a costed design for inclusion in this report and revised capital cost estimate.

The design basis and resultant approach adopted for this study update are summarised below.

7.2 Design Criteria and Objectives

7.2.1 Design Objectives

The design objectives for the Tailings Storage Facility (TSF) are as follows:

- Permanent and secure containment of all solid waste materials.
- Maximisation of tailings densities using sub-aerial deposition.
- Removal and reuse of free water.
- Reduction of seepage.
- Containment of design storm events within the TSF.
- Ease of operation.
- Rapid and effective rehabilitation.

The design objectives for the water management and sediment control system are as follows:

- Diversion of rainfall runoff from catchment areas upstream of the TSF, around site infrastructure to discharge offsite downstream of the project.
- Supply of raw water for plant use.
- Reduction of sediment-laden runoff from the site infrastructure using source control measures, to reduce sediment loading.

7.3 Design Criteria

7.3.1 Consequence Category

Population at Risk

Based on the preliminary dam break assessment, the population at risk (PAR) falls in the 1 to 10 category. This is on the lower end of the risk scale.

Severity Level

The severity level for a dam break is assessed as Medium to Major.

Consequence Category

Based on ANCOLD "Guidelines on Tailings Dams – Planning, Design, Construction, Operation and Closure" May 2012 the consequence category for the facility is rated as 'High C'.

Based on the Consequence Category the following design criteria were used:

- Extreme Storm Storage Allowance: Maximum of a 1:100 AEP 72 hour or a 1 in 100 Wet Year Sequence.
- Freeboard: 1:10 AEP Wind plus 0.5 m.
- Design Spillway Floods: PMF.
- Earthquake: OBE = 1 in 1,000 yr; MDE = 1:10,000 yr.

7.4 Climate Data

7.4.1 Temperature

The maximum and minimum temperature observations for the three regional stations of Airi, Gimbi and Alghe, which are the most relevant to that which may be observed in Tulu Kapi, are as shown in Figure 7.1.

Source: SRK Consulting, 2011

Average daily minimum, maximum and average temperatures recorded at the on-site Tulu Kapi Rotunda meteorological station for the period 17 February 2014 to 3 June 2014 are shown in Figure 7.2. Temperature ranges are consistent with the regional conditions, ranging from approximately 15°C to 30°C during this period. The maximum temperature (35.5°C) was recorded on 1 April 2014.

Figure 7.2 Average Daily Minimum, Maximum and Average Temperature

7.4.2 Wind

The wind rose for Tulu Kapi was based on the analysis of the MM5 modelled meteorological for the years 2007 to 2011 (see Figure 7.3). Winds at Tulu Kapi are expected to originate from the south-south-west (9.25% of the time) and south (7.75% of the time). Wind speeds are low, with a high percentage (18.5%) of calm conditions (< 1 m/s).

Diurnal Winds

Between 00:00 to 05:59, winds are predominantly from the south (14% of the time) and south-southwest (10% of the time). During the morning (06:00 to 11:59), winds originate from the east-southeast (12.1% of the time) and east (11.9% of the time). During the afternoon and early evening (12:00 to 17:59), winds originate from the north (13.5% of the time) and north-northeast (12% of the time). During the late evening (18:00 to 23:59), winds largely originate from the south-southwest (13.5% of the time).

Seasonal Winds

During winter (DJF), winds are predominantly from the east-north-east (15% of the time) and east (14% of the time). During spring (MAM), winds are predominantly from the south (10.5% of the time) and south-southeast (8.5% of the time). During summer (JJA), winds are predominantly from the south-southwest (21% of the time) and southwest (15% of the time). During autumn (SON), winds are predominantly from the north-northeast (9% of the time) and equally east and northeast (8% of the time).

7.4.3 Rainfall and Evaporation Data

The climate data used was based on processed rainfall data from Gore and evaporation data from Peens & Associates "Tulu Kapi Tailings Storage Facility Baseline Hydrological Assessment", February 2012. The data are summarised in Table 7.1.

	Rainfall			Evaporation
Month	Average (mm)	1 in 100 Wet Year (mm)	1 in 100 Dry Year (mm)	(Lake equivalent) (mm)
January	14.3	17.6	19.0	136
February	42.9	2.5	24.8	155
March	42.9	179.0	20.7	156
April	31.8	36.8	14.9	160
May	155.0	314.5	191.3	140
June	275.0	372.2	192.1	104
July	161.4	384.7	104.3	69
August	290.9	380.6	188.0	65
September	275.0	514.4	214.5	71
October	290.1	215.0	136.6	111
November	86.6	297.8	41.4	121
December	29.4	30.1	51.3	131
Total	1,695.3	2,745.2	1,198.9	1,419

Table 7.1	Monthly F	Rainfall and	Evaporation	Data

7.4.4 Storm Data

The storm data analysis was based on daily precipitation data from Gore. After removal of errors and outliers in the data, the storm values as noted in Table 7.2 were applied.

Duration		Frequency ((Annual Recurrer	ice Interval)	
Burution	10	50	100	500	1,000
6	73	92	101	123	134
12	88	111	122	148	160
24	104	132	144	176	191
72	140	182	200	241	261

Table 7.2Storm Events (mm of Rainfall)

For the storm capacity factor in the TSF design, a conservative storm rainfall of 300 mm was used (greater than the 1 in 1,000 years / 72 hour event).

7.5 **Geotechnical Conditions**

The geotechnical conditions in the TSF and Water Dam (WD) area were assessed based on previous investigations and the following conclusions drawn:

- The scope of work comprised drilling of 6 boreholes to depths of between 12 m and 30 m into bedrock, excavation of 58 test pits, and laboratory testing of selected samples.
- The sub-surface profile within the TSF and WD footprints comprises a variable thickness of laterite and saprolite soils overlying bedrock. Minimal depths of soil overburden were encountered in the valley floors, increasing to upwards of 25 m across the basin areas. The soils comprise red brown or orange brown predominantly medium to high plasticity clayey silt. These soils are firm to stiff becoming stiff to hard in consistency with depth and have low in situ permeability. Bedrock comprises very weak to weak weathered diorite, becoming moderately strong with depth. At the WD site, an intersection of highly weathered, very weak chlorite schist was logged in borehole BH-5-03 between 8.2 m and 13.5 m depth as a sheared contact with a basic dyke.
- Monitoring data indicates that groundwater is located at between 2.4 m and 15 m in the TSF and WD area. Test pit excavations in proximity to watercourses encountered groundwater at a depth of approximately 1.0 m to 1.5 m indicating that near to the valley floors the groundwater level will correspond approximately with creek level.
- Laboratory testing data indicates that the near surface soils should not be susceptible to liquefaction.
- Substantial quantities of borrow material may be sourced from the laterite and saprolite clayey silt horizons which are present beneath the basin areas of both facilities. It is recommended that some depth of low permeability soil cover should be left in place to mitigate potential seepage loss through the upper rock horizons.
- The ground conditions encountered at the proposed TSF and WD embankments should provide competent foundations for the facility embankments.

7.6 **Tailings Characteristics**

7.6.1 **Physical Characteristics**

The following tailings characteristics, which are based on prior test work, were assumed for the design:

- 2.8 t/m^3 . Tailings SG
- 75 microns. P_{80}
- 40%. Slurry % solids
- 48%. Initial Supernatant Release
- 1.3 t/m³. Final Dry Density of Tailings Mass

It is recommended that additional testing to determine the physical behaviour characteristics of the tailings is undertaken in the final design phase. (Note: this study update has coarsened the grind for the process to P_{80} = 150 microns, with the result that the settling characteristics will be affected, and hence testing of the coarser tailings is recommended for the final design.)

7.6.2 Geochemical Characteristics

Preliminary geochemical testing was undertaken and the following significant factors determined:

- The tailings has low sulphide content (<0.01%) and thus will be non-acid generating during the operational phase.
- The supernatant and seepage is expected to be neutral to alkaline with elevated concentrations of arsenic, selenium, antimony and molybdenum.
- Post closure potential elevated concentrations of iron and manganese may generate acidity when the seepage flow is exposed to oxygen.

The design conclusions based on the preliminary data are as follows:

- Seepage control measures will be required to limit seepage outflows.
- Storm capacity on the facility will need to be sufficient to provide adequate dilution prior to release.
- A cover will need to be placed over the tailings at closure to limit water and oxygen ingress.

It is recommended that an additional phase of geochemical testing on the tailings is undertaken.

7.7 Tailings Storage Facility Design

7.7.1 Site Selection

A number of valleys within the current mine lease area were examined to assess the tailings storage potential as shown in Figure 1.1 in Appendix 7.1. This indicated that the only valley with sufficient storage potential (within the lease boundaries) was the valley to the east of the plant area.

7.7.2 General Description

The facility will be constructed in the valley to the east of the plant site as shown in Figure 1.2 in Appendix 7.1. The main embankment will be constructed at the northern end of the valley at a narrow section. The valley has three main branches and the embankment will enclose a total catchment of about 260 ha. In order to maintain the TSF as a 'water negative' facility two water dams (WD1 and WD2) will be constructed upstream of the tailings area. The water dams will divert water around the tailings area and also provide a raw water supply for the plant.

Tailings discharge will occur from the downstream (north) side of the two water dams and the eastern side of the tailings area with the tailings profile sloping down to the decant pond on the western side of the main embankment. The decant return will be pumped back to the plant for reuse in the process. It was assumed that tailings deposition commences in October 2019.

7.7.3 Embankment Construction

The main embankment will be a downstream multi zoned embankment constructed initially out of local borrow with mine waste providing the bulk of the future embankment raises.

The embankment zones will consist of an upstream erosion control layer consisting of a geotextile layer for Stage 1 replaced with rockfill for future stages when it becomes available from the pit; a low permeability (Zone A) upstream zone consisting of selected local borrow materials moisture conditioned and compacted as required to achieve a suitable low permeability and a downstream structural zone consisting of local borrow for Stage 1 and Run of Mine waste for future stages.

The embankment crest will be 10 m wide with an upstream slope of 1V:2.5H and a downstream slope of 1V:3H with nominal 5 m benches at 10 m height intervals (overall slope of 1V:3.5H). The embankment lifts will be a minimum of ~ 2 m height to ensure a downstream working platform width for fill placement of 15 m or more. Stage 1 Embankment Crest has been adjusted to ensure that even if the tailings has a flatter slope than the selected design slope (1V:120H) there is sufficient storage capacity available. The embankment staging is provided in Table 7.3.

Year	Stage	Tonnage (Mt)	Months of Capacity	Crest RL (RLm)	Lift Height (m)
-1	1	1.43	12	1620.0	~25 m Max
1	2	1.70	12	1625.3	4.1
2	3	1.70	12	1630.0	4.7
3	4	1.7	12	1633.8	3.8
4	5	1.50	12	1637.1	3.2
5	6	1.50	12	1639.7	2.6
6	7	1.50	12	1642.1	2.4
7	8	1.50	12	1644.4	2.2
8	9	1.50	12	1646.3	1.9
9	10	1.36	11	1648.2	1.9
	Total	15.4	Final	1647.1	

Table 7.3 Embankment Staging

The embankment levels given are the minimum height required and it is viable to raise the embankment at a faster rate to suit mine waste production schedules.

To enhance the downstream stability of the embankment, drainage will be provided at the base of the valley from the back of the Zone A to the downstream toe.

7.7.4 Seepage Control

To reduce seepage losses a number of seepage control measures will be incorporated into the TSF design as follows:

• Cut-off Trench – a cut-off trench will be constructed at the end of the Zone A to competent, low permeability foundation material (nominal 2 m depth).

- The base of the TSF area will be scarified and compacted to produce a low permeability soil liner. In areas with unsuitable material or exposed rock suitable material from elsewhere in the basin will be imported to form the low permeability soil liner.
- Underdrainage System an underdrainage system will be constructed in the area in front of the embankment to drain the base of the tailings adjacent to the embankment and reduce water driving pressures into the underlying layers. This system will only commence operation when the area is covered by tailings.
- Underdrainage Collection Sump an underdrainage collection sump will be installed to collect the water from the underdrainage system.
- Decant System the decant system will be designed and operated to minimise the decant pond as much as practicable.
- Downstream Monitoring Bores the monitoring bores downstream of the embankment will be constructed so that they can be converted to pump out bores if required.

7.7.5 Decant System

The TSF decant system will be developed in two phases:

- Phase 1 will operate in Stage 1 when the rate of rise is high and will consist of a floating barge in the decant pond pumping return water back to the plant.
- Phase 2 will operate from Stage 2 and will consist of a decant tower on the west abutment adjacent to the main embankment. As the supernatant pond increases in elevation, additional towers will be constructed higher up the slope. Each tower will consist of a concrete base and 1.8 m diameter slotted precast concrete pipes. The towers will be surrounded by free draining rockfill. The collected supernatant will be pumped back to the plant. If required a pump booster station could be constructed on the access causeway to the decant tower.

7.7.6 Emergency Spillway

The TSF will be designed to hold the 1 in 100 wet year rainfall runoff and/or a 1 in 100 year 72 hour storm volume. Under nominal operating conditions with the TSF managed in accordance with standard operating procedures the available stormwater storage capacity will be in excess of the design storm volume and no discharge from the TSF is expected.

In the event of an extreme event greater than the design storm any rainfall and supernatant that cannot be stored on the facility will be discharged in a controlled manner via an emergency spillway. The operational spillway will be constructed around the east side of the TSF and will be designed for the PMF event.

A closure spillway will be constructed at the lowest point in the facility through the west abutment ensuring no ponding of rainfall occurs on the facility surface post closure.

7.7.7 Tailings Deposition

The tailings delivery pipeline will be installed across WD1 and WD2 and then around the eastern side of the facility. A total of about 6 to 8 discharge points will be installed. A discharge pipeline will be extended down the valley to the top of the active tailings area. As the tailings extend up the valley the discharge pipeline will be shortened appropriately. This deposition approach will produce a sloping beach profile extending down towards the main embankment. Given the low seismicity of the site (0.02 to 0.05 g) it is not anticipated that any tailings liquefaction or slumping will occur.

7.7.8 Stability

The stability analysis has not been redone for the current design. The following points should be noted:

- In the previous DFS with a part downstream / part upstream embankment, the stability analysis using site material parameters and a downstream slope of 1V:3H indicated the embankment was stable. The current design is a fully downstream embankment with a flatter overall downstream slope of 1V:3.5H.
- In the previous DFS it was recommended that a drainage system was constructed in the downstream embankment zone to enhance stability. The current design has a downstream drainage system.
- The embankment has been relocated into the narrowest section of the valley. At its current location the 3D effects of the abutments will provide increased stability.

Based on these factors it is considered that the embankment should be inherently stable. A detailed stability analysis will be undertaken as part of the final design.

7.7.9 Dam Break

A dam break analysis is required for the TSF. The local river is about 9 km downstream of the TSF.

The overall slope from the TSF to the river is about 1V:70H. The gradient along the river is about 1V:400 to 450H. Thus it is anticipated that the tailings will flow down to the river as a slurry flow and then deposit along the river in both directions as per Figure 1.3 in Appendix 7.1. Typically along the flow path directly downstream of the TSF houses are placed on top of the ridges and hills up to 30 to 50 m above the drainage path. Thus many of the dwellings may not be impacted by a dam break flow.

Based on this preliminary assessment about 1 to 10 people may be at risk in a dam break event.

The closure concepts for the facility will depend on the long term geochemical stability of the tailings and the post closure land use.

The tailings surface slopes down to the proposed closure spillway and thus minimal reshaping of the surface is required.

The cover will incorporate a compacted low permeability layer to reduce infiltration and oxygen ingress into the tailings post closure.

The top section of the cover will be designed to meet the post closure land use. For example if the area is to be returned to cropping the cover materials will need to be thick enough to prevent the roots of the crops from reaching the tailings surface. If other potential land uses are proposed, the cover will need to be modified appropriately.

7.8 Water Management

7.8.1 General

The water management around the TSF consists of two components:

- The management of water on the tailings facility; in particular developing a facility water management design that is water negative.
- Supply of raw water for use in the plant.

The overall approach was based on determining the minimum catchment size that would allow the TSF to remain water negative for different tailings areas and diverting the remaining water flows in such a way that the water is available for use in the plant.

7.9 TSF Water Balance

7.9.1 Catchment Diversion

The first step in the water balance work was to determine the sensitivity of the TSF water balance to catchment area. A simple annual water balance using typical parameters was developed and the results are summarised in Table 7.4.

Table 7.4 Maximum Catchment for	Water Negative Water Balance
---------------------------------	------------------------------

Catchment Area	Tailings Area (ha) at Which WB Goes Water Positive
Full (Catch = 260.2 ha)	48
With WD1 (Catch = 210.5 ha)	56
With WD2 (Catch = 188.7 ha)	59
With WD1 and WD2 (Catch – 139.0 ha)	66.5

The TSF footprint based on the modelling reaches a maximum of about 58 - 60 ha. So utilising both WD1 and WD2 should be sufficient to maintain a negative water balance.

7.9.2 Water Balance – Average Conditions

A monthly water balance was developed incorporating both the TSF and the diversion systems. Under average climatic conditions the pond reaches the minimum pond size in each dry season. The maximum pond size increases each year as the area of tailings expands. See Figure 1.4 in Appendix 7.1.

The peak volume occurs in the last wet season of the operation where the pond reaches a maximum value of $537,900 \text{ m}^3$.

7.9.3 Water Balance – 1 in 100 Wet Year

A 1 in 100 wet year was inserted (independently) into the model in each year as shown on Figure 1.4 in Appendix 7.1. The modelling indicates that the pond increases significantly in the wet year but in the subsequent years returns back to the average pond configuration in approximately two years of average rainfall. After Year 7 it takes about three years to return to the average pond configuration. The peak volume occurs from a wet sequence over the last wet season of the operation where the pond reaches a maximum value of 1,410,800 m³. The embankment levels as listed in Table 1.3 are primarily controlled by the 1 in 100 wet year pond volume as shown on Figure 1.5 in Appendix 7.1.

7.10 Water Storage and Diversion

7.10.1 Water Diversion

As shown on Figure 1.2 in Appendix 7.1 the area upstream of the TSF catchment area will be diverted. This will be achieved by constructing two water dams in the two valleys to the east of the plant site. Water Dam 1 (WD1) is in the valley directly below the plant site area. This storage will provide water back to the plant. Water Dam 2 (WD2) is in the next valley to the east.

Associated with the two water dams are three diversion channels:

- Diversion Channel 1 (DC1) from WD1 northwards along the ridgeline from the water management area.
- Diversion Channel 2 (DC2) from WD2 to WD1 overflow water from WD2 will flow along the channel to WD1.
- Diversion Channel 3 (DC3) east of WD2 directing runoff from the upper east catchment into WD2.

Operationally, water will be pumped from WD1 to the plant to provide the raw water supply. Water will be pumped from WD2 to WD1 each dry season (nominally up to 50,000 m³/month) to provide water in WD1 to supply the plant water demand. It is necessary to build the water dams and diversion system in advance of commissioning in order to accumulate sufficient water for start-up. In order to prevent a shortfall under both average and dry conditions in Year 1 the two water dams needs to be constructed early enough to capture two wet seasons prior to commissioning. Based on a plant commissioning date of October 2019 the water dams would need to be operational in March 2018.
In order to prevent a shortfall under dry rainfall conditions the two dams will need to be constructed early enough to capture two wet seasons prior to commissioning. This risk item has been considered and included in the Implementation schedule in Section 13.0. For the purposes of the schedule an assumption has been made that the construction of the dams will occur outside of the wet season. Attempts to construct the dam during the wet season may have an adverse impact on the provision of water for start-up.

7.10.2 Water Dams

The water dams will both be downstream multi zoned embankments with a 10 m wide crest and upstream and downstream slopes of 1V:3H. The embankment zones will consist of an upstream erosion control layer which will be durable waste rock of a suitable size; an upstream low permeability zone (Zone A) to reduce seepage through to the TSF area and a downstream structural zone (Zone C). The material for constructing the two water dams will be won from local borrow. If suitable durable waste rock is not available economically, HDPE could be used as an upstream face erosion control system. Table 7.5 provides design data for the two water dams.

Dam WD1 WD2			
Catchment (ha)	49.7	105.1*	
Height (m)	27	20	
Storage Capacity (Mm ³)	0.58	0.332	
Nominal Embankment Fill (m ³) 130,000 85,000			
* Includes area from Diversion Channel 3			

Table 7.5 Water Dams

It is recommended that the downstream faces of the water dams are vegetated to reduce erosion and sediment loss.

7.10.3 Diversion Channels

The diversion channels are designed based on diverting the bulk of the rainfall runoff from the upstream catchment and transferring water from water dam to water dam. The channels will have a base width of 2 m and be a minimum of 0.8 m deep giving a maximum flow rate of 4 m³/s or up to 300,000 m³/day.

For storm events that result in flows larger than the design, the diversion channels will overflow into the TSF area. Similarly both water dams will have emergency spillways to discharge into the TSF to prevent overtopping of the water dam embankment.

7.10.4 Water Supply

The two water dams are insufficient to supply the full plant water demand under both average and 1 in 100 dry year climatic conditions. The model was run with an external bore input based on the bore running for six months during the dry season (December to May) each year. Table 7.6 summarises the bore input requirements.

Climatic Conditions	Bore Supply Rate (L/s)	Shortfall Years
Average	8.50	2 to 5
1 in 100 Dry Year		2 to 5
Year -2	9.63	2 to 5
Year -1	12.54	2 to 5
Year 1	15.47	2 to 5
Year 2	17.31	2 to 5
Year 3	15.13	2 to 5
Year 4	11.98	2 to 5
Year 5	9.58	2 to 6
Year 6	8.50	2 to 7

Table 7.6 Bore Input Flows

A minimum bore inflow rate (assumed to be pumped into WD1) of 8.5 L/s will be required to prevent shortfalls under average climatic conditions increasing to a supply rate of 17.3 L/s for 1 in 100 dry year climatic conditions.

7.11 Sediment Control

The design of the TSF and water management system provide a high level of sediment control in the existing structures as follows:

- The water dams will act as sediment traps for the upstream catchments.
- The TSF will act as a sediment trap for flows off the water dam embankments and areas to the south of the water dams.

A sediment control pond will be constructed downstream of the TSF embankment to capture sediment generated by runoff from the embankment. In later stages the downstream section of the embankment will be constructed of waste rock and the sediment control requirements will be reduced.

7.12 External Water Sources

The construction of the water dams in advance of commissioning will result in sufficient water availability for the plant raw water needs for Year 1. Water demands for dust control or pit operations will need to be supplied from other sources.

7.13 Design

Refer to Appendix 7.2 for further design drawings of the TSF and Water Dams.

8.0 OFFSITE INFRASTRUCTURE

8.1 Introduction

Onsite Infrastructure remains unchanged except for the relocation of TSF and WD embankments and relocation of the Mining and Administration facilities and buildings to an area adjacent to the plant to reduce bulk earthwork costs. The relocation of Mining and Administration facilities was possible due to optimised plant layout.

A full description of the on-site facilities is given in the 2015 DFS and the new locations are shown in the updated general layout drawing included in Appendix 6.5.

It is envisaged that a 32 month construction period will be required between project start (Financing and Implementation of Resettlement Action Plan) and first gold pour in order to construct all the necessary project supporting infrastructure and mining and processing facilities.

The location of existing and proposed Offsite infrastructure which will be required for the development of the project is given in Figure 8.1.

The selected Tulu Kapi site is an undeveloped mining site with limited existing infrastructure consisting of the existing exploration camp. New infrastructure will be required to support the mining, processing and construction operations. The main infrastructure required for the development of the project can be broken down into two main areas, Offsite Infrastructure (outside the mining lease) and Onsite Infrastructure (within mining lease boundaries). Facilities and Infrastructure within these areas are as follows:

Onsite Infrastructure

- Mining haul roads.
- Mining and maintenance workshops.
- Fuel and lubricant storage.
- Explosives magazine.
- Warehouses and lay down yards.
- Power distribution.
- Emergency power plant.
- Administration buildings and first aid clinic.
- Assay laboratory.
- Water supply system.
- Mine accommodation camp.

- Raw water supply dams.
- Plant Tailings Storage Facilities (TSF).
- Sewage treatment and disposal site.

Offsite Infrastructure

- Main access road.
- Community bypass roads.
- Grid power supply.
- Air strip.

Figure 8.1 Mine Licence Area and Offsite Infrastructure

8.2 Offsite Roads

Although there are existing roads in the project area, to minimise impact on the local community the Tulu Kapi Gold Project will require, during the project implementation period, the construction of two major roads that lie outside the mine licence area, specifically:

- The Keley to Tulu Kapi Main access road which has a total length of approximately 14.2 km.
- The Southern bypass road which has a total length of approximately 4.0 km.
- The Northwest bypass road which has a total length of approximately 1.0 km.

Since the 2015 DFS the Government has upgraded the main highway to Gulliso and other secondary roads in the vicinity of the project. Based on these upgrades, access and bypass road routes were re-evaluated in order to assess the possibility of reducing project capital costs and further minimising impact on local communities.

The alternative routes which were evaluated and Access Route options report is given in Appendix 7.2.

8.2.1 Main Access Road Optimised Design

The Access Route options study has shown that the Main Access Road as based on the 2015 DFS is still the most viable option to minimise impact on the local community and has the lowest cost option.

The Keley to Tulu Kapi access road was originally designed for the 2015 DFS as an unpaved Design Class DS5 road for mountainous terrain in accordance with the Ethiopian Roads Authority's Design Manual for Low Volume Roads. The road was designed to be 7 m wide and with a maximum road grade of 9%.

In order to reduce cost the road was re-aligned in certain areas and the classification to which it should be built was revised from a DS5 (as per DFS) to a DS6 access road.

The DS6 classification specifications are six meters wide and with a maximum road grade of 12%. The 12% grade is not suitable for the fuel trucks if the length of this grade is longer than 400 m. This has been incorporated into the design.

Where the road crosses the Birbir River the bridge will be designed and constructed to DS5 classification; this will allow KEFI to upgrade the road to a DS5 classification if required at a later date.

The Main Access Road is designed to ensure heavy vehicle access to the project site during the production period is diverted away from the current Keley and Genji road. This will allow the public to travel safely along the existing road. The new road will be designed and constructed to meet the Ethiopian road standards.

The new Kely to Tulu Kapi main access road ties into the mine access road which is inside the mine licence area. Traffic on the main access route to the Tulu Kapi access road will be able to drive to the Mine Accommodation Camp, Mine Maintenance facility, Administration Building, and Process Plant.

In July 2016 it was noticed that the Zone Administrator had started upgrading the 'New' Keley – Tulu Kapi access route. Additional cost savings are expected during the permitting and construction period once a final detailed design is carried out by optimising the final route to take into account the upgrade which has been

initiated by the Zone Administrator and evaluating closely construction options for the bridge crossing the Birbir River.

The design drawings, estimated bill of quantities and estimated pricing for the Main Access Road are included in Appendix 7.2.

8.2.2 Southern Bypass Road Optimised Design

The Southern Bypass road to be constructed as per the 2015 DFS will require only minor re-alignment.

The Southern Bypass will be constructed to provide connectivity to the existing rural roads making best use of the topography to provide acceptable gradients and minimise disruption to the local community. The bypass roads will maintain existing traffic patterns and will be constructed as an unpaved, 3 m wide, Design Class DS9 road for Mountainous Terrain in accordance with the Ethiopian Roads Authority's Design Manual for Low Volume Roads. When completed, the road will be surfaced with a 150 mm thick crushed rock wearing surface.

The design drawings, estimated bill of quantities and estimated pricing for the Main Access Road are included in Appendix 7.2

8.2.3 Northern Bypass Road Optimised Design

The Northern Bypass road will be constructed as per the 2015 DFS but will following an alternative existing track to that used in the 2015 DFS. This will reduce the length from approximately 2.3 km to 1.0 km.

The Northern Bypass connects the existing north-south access road with the existing east-west Guji / Genji public road near the village of Guji and will follow existing tracks. Northern bypass is designed to divert local traffic away from the mining licence area and more specifically from the 500 m blast perimeter. The road will not be required during the initial project implementation phase and construction may be delayed until after operations commence.

The design drawings, estimated bill of quantities and estimated pricing for the Main Access Road are included in Appendix 7.2.

8.3 Airstrip

For the 2015 DFS a 35 m diameter helipad (helicopter landing zone) was included in the design and capital cost. The helipad was located immediately north of the gold room within the process plant area. The helipad was provided to support helicopter transport of gold bullion from the plant directly to Addis Ababa and cater for emergency events.

This has now been replaced with an airstrip.

A suitable location for the construction of an airstrip has been identified as shown below in Figure 8.2.

Figure 8.2 Tulu Kapi Gold Project Airstrip Location

The 1.2 km airstrip for daylight use only is located adjacent to the mine accommodation camp. A service will be negotiated and implemented using a local Ethiopian aviation contractor to run regular services as required between site and Addis Ababa using 'Cessna C208B Grand Caravan' type aircraft. The C208B Grand Caravan is a single-engine turbine STOL capable aircraft capable of carrying up 12 passengers or up to 1.5 t of cargo. It has a large rear side cargo door and has a range of over 850 nautical miles and it is able to land on short, unprepared airstrips.

Local engineering company, CCC Engineering (Addis Ababa, Ethiopia), has carried out a study for the design and cost of the airstrip. The estimated bill of quantities and pricing for the airstrip are included in Appendix 7.2.

8.4 Grid Power Supply

Grid Power design remains unchanged from the 2015 DFS. The EPC cost in the capital cost estimate has assumed power will be made available by KEFI.

9.0 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT

Environmental and Social Impact Assessment remains unchanged from the 2015 DFS.

9.1 Introduction

An Environmental and Social Impact Assessment (ESIA) was undertaken and submitted to the Federal Ministry of Mines (MoM) in October 2014 for approval together with the mining license application. This submission was accompanied by a Resettlement Action Plan (RAP) for the families to be resettled that are located within the mining license area.

The ESIA was undertaken for the proposed development based on the 2015 DFS pit design and mining schedule which was based on a 10 year mine life with low grade stockpile treatment from Years 11 to 13 and a processing rate of 1.2 Mtpa.

The Project impacts and associated mitigation measures, based on the aforementioned pit design, as presented in the ESIA were assessed by the ministerial committee and the ESIA for the Tulu Kapi Project and an approval letter was issued on 9 April 2015 by the Federal Ministry of Mines (MoM).

The current pit design and associated Project description does not differ appreciably from that considered in the ESIA. The only key differences are:

- Relocation of the TSF starter embankment approximately 100 m to the north-east to reduce initial capital costs (footprint remains the same).
- Increased processing rate which reduces current project LOM from 13 years to 10 years.
- Re-alignment of processing plant to decrease site infrastructure footprint.

Engineering considerations associated with the TSF starter embankment and storm water channel realignments are included in this Study design. Final construction designs will be submitted to the relevant authorities as stipulated in the Mining License; however, as indicated in the ESIA approval letter, the environmental and social impacts associated with these developments do not need to be addressed in an ESIA amendment as they do not constitute significant changes to the project design that result in changes to the predicted environmental, socio-economic and health impacts.

9.2 Resettlement Action Plan (RAP)

The terms of the RAP are based on the provisions in the Mining Agreement and remain unchanged.

An initial Resettlement Action Plan (RAP) has been developed in consultation with the community to address the resettlement of these people. The RAP describes the policies, procedures, compensation rates, mitigation measures and schedule for resettlement.

The approach to involuntary resettlement is consistent with the IFC's performance standards on Environmental and Social Sustainability and will adopt a collaborative approach involving the Government of Ethiopia and the affected communities.

Compensation policies and procedures were established in an open and transparent manner with the intention of restoring and improving the livelihoods of the affected people with reward for self-reliance and self-help. Only those who have been identified as having a legitimate interest in respect of immovable assets such as structures, crops and land use will be eligible for compensation.

Households identified for resettlement will be primarily responsible for the design and construction of their own residential houses on the selected sites. Even though resettlers will be fully compensated for the value of their existing property, KEFI will consider potentially providing starter houses for eligible resettlers. The purpose of the starter houses would be to offer shelter at the resettlement from Day 1 of the relocation and the design is intended to facilitate building of extensions to the starter house by the resettlers.

Studies have identified, recorded and valued all assets eligible for replacement or compensation. If a person is eligible for resettlement or relocation compensation there will be a sign off procedure that will be followed. This procedure will ensure that the person meets the requirements and understands the level of compensation that will be offered.

The Relocation Action Plan (RAP) will be implemented by a team of professionals comprising senior members from KME and Government Ministries. The RAP provides for the monitoring of the resettlement program to assist and improve the living conditions of the affected people. This will verify that all commitments within the RAP are met.

KEFI and Government of Ethiopia are particularly focussed on livelihood restoration support and improvement for households affected by resettlement. All project decisions will be considered in the context of a mainstreaming of livelihood considerations. In this sense, all aspects of the land access, resettlement and mine development are considered in terms of livelihood implications, to ensure all key project decisions promote livelihood restoration and development. An example of this is the detailed analysis which is being undertaken on potential resettlement host lands in terms of livelihood factors, and this will influence and inform the site selection decision-making process.

9.3 Environmental Management Plan

The terms of the Environmental and Social Management Plan (ESMP) are based on the provisions in the Mining Agreement and remain unchanged.

The primary aim of the ESMP is to mitigate negative impacts and enhance positive benefits of the Project. The ESMP comprises a series of individual plans that outline the scope of environmental, social and health management pertaining to compliance with applicable regulatory requirements. It translates the findings and recommendations of the ESIA into clear measures for the management and monitoring of impacts during the three project phases. KEFI will implement, maintain and update the following plans in accordance with the provisions of the ESMP for both construction and operations.

- Air Quality Management Plan.
- Noise and Vibration Management Plan.
- Water Management Plan.
- Waste Management Plan.

- Flora and Fauna Management.
- Social Management Plan.
- Cultural and Heritage Resources.
- Emergency Response Plan.

KEFI will develop and implement an Environmental Management System (EMS) to a recognised standard in accordance with their environmental policies to ensure the management of environmental impacts caused by the Tulu Kapi mine and operations are continually monitored and improved.

KEFI will ensure the availability of the human and financial resources needed to conduct all environmental management, mitigation and monitoring activities at the Tulu Kapi mine throughout the construction, operation and closure phases.

10.0 PERMITTING

Permitting remains unchanged from the 2015 DFS.

10.1 Introduction

When the Mining Licence was issued, a Mining Agreement with the Government of Ethiopia, which sets the fiscal regime, taxation and royalties as they affect the operation of the mine, was also signed. The Licence and Mineral Agreement (MA) were signed by KEFI and the Company's wholly owned subsidiary (KME) on 13 April 2015.

Under the MA, KME was granted a Mining Licence valid for 20 years (renewable) which fully permits the development and operation of the Tulu Kapi Gold Project. The Mining Licence can be renewed, with each renewal subject to a maximum period of 10 years.

The issuance of the Mining Licence also marks the Government's approval of the Environmental and Social Impact Assessment, including the Community Resettlement Action Plan which was prepared by Golders.

Under the MA, the Government of Ethiopia is entitled to a 5% free carried interest in KME. In addition, the Government of Ethiopia receives a 7% royalty on the revenues from mineral production.

The Government has also re-confirmed its intention to make an equity investment at project level of circa US\$20 million to fund the power line, offsite infrastructure and a portion of the resettlement costs. This investment will result in the Government stake increasing to circa 25% (including the pre-existing 5% free carried interest).

10.1.1 Ancillary Licences and Authorisations

The Company has scheduled the applications for ancillary licences and authorisations, including transport, construction and power, as and when required from provincial authorities (these are of a more routine and procedural nature). The triggering of the resettlement program is scheduled to commence to coincide with project finance approvals.

A summary of the key permits required under the Ethiopian Modern Mining Act is set out below.

Table 10.1 Permitting Requirements

Requirement	Type of Work	Regulation/Permit	Government Authority	Required by	Comments
ESIA Compliance Letter	Environmental and social impact assessment	Proclamation 299/2002	Ministry of Mines	13/04/2015	Issued on 09/04/2015
Cultural Heritage Study	Exploration /study	Proclamation 209/2000	Cultural Heritage	2 nd qtr 2017	Covered as part of ESIA, but will be Updated
Waste Disposal	Generate, store, transport, treat, or dispose of hazardous waste	Proclamation 300/2002	Environmental Pollution Control	3 rd qtr 2017	Required in order to commence construction
Chemical Use	Importation, preparation, storage, distribution, transport or use of chemicals categorized as hazardous or restricted use	Proclamation 300/2002	Environmental Pollution Control	1 st qtr 2018	Required in order to commission the processing plant
Water Use Permit	Use of water resources, discharge of waste, construction of waterworks	Proclamation 197/2000	Water Resources Management	N/A	As designed, the mine will not require this permit to operate
Water Use Permit	Use of project water in line with water resources management	Proclamation 534/2007	River Basin Councils and Authorities	1 st qtr 2018	Required for release of water to baseline conditions to local waterways
Nuclear Permit	Importation or transportation or use of radioactive substances	Proclamation 300/2002	Environmental Pollution Control	1 st qtr 2018	Required in order to import process plant components
Communication Licences	VSAT, radios	ı	ı	Ongoing	KEFI already has VSAT and radio licences
Electrical	For 15 MW supply of power	Regulation 170/2009	Ethiopian Electric Power Corporation	N/A	Ethiopian Government is going to Construct for equity in the project.
Explosives Use Permit	For blasting		Ethiopian Security Agency	4 th qtr 2018	Not expected for initial mining
Trading Licence	For importation of goods		Ministry of Trade	N/A	Registration required – but Mining Licence is equivalent
Health Permit	Constructing buildings for public services	Proclamation 200/2000	Ministry of Public Health	3 rd qtr 2017	In addition to local health authority; may be required for resettled peoples and camp health post

1953\17.04\1953-000-GEREP-0001_C

May 2017 KEFI Minerals PLC

Requirement	Type of Work	Regulation/Permit	Government Authority	Required by	Comments
Timber Removal	For removal of timber to local markets	Proclamation 542/2007	Forest Development, Conservation and Utilisation	N/A	Only in the event that trees are cut and moved to market
Tree Removal Permit	For removal of trees during project construction		Oromia Forestry and Wildlife Directorate	3 rd qtr 2017	Will be required to commence construction works
Road Construction Permit	Construction of gravel road to rural standards		Oromia Regional Roads Authority	N/A	Ethiopian Government is going to Construct for equity in the project.
Construction Permit	Construction of buildings for camp	Proclamation 624/2009	Ethiopian Building designated organisation	3 rd qtr 2017	Planning consent required in order to obtain a permit.

11.0 CAPITAL COST ESTIMATE

11.1 Capital Cost Introduction

This section has been prepared to provide an understanding on how the project Capital Cost Estimate (CCE) has been developed and to provide information on what is and is not included in the scope of the CCE for the purpose of this report.

The capital cost estimate prepared assumes a greenfield gold project capable of processing a nominal 1.5 Mtpa as a contractor-operated open pit mine, with a conventional grinding, CIL plant design. In order to carry out the necessary analysis, sufficient design, scheduling and equipment costing has been carried out post 2015 DFS by way of the Lycopodium FEED to update the capital cost estimates to an accuracy of +15% to -15%. In addition Lycopodium together with Knight Piésold has carried out an assessment of the TSF and Water Dams options. A suitable option was selected, reviewed in collaboration with KEFI and Increva, quantified and estimated for inclusion of this CCE update.

11.2 General Estimating Methodology

The CCE was prepared in accordance with Lycopodium standard estimating procedure and has been compiled using a first principles estimating philosophy.

This estimate is based on an implementation strategy using a combination of Principal, 'self perform' portions of scope and engineering, procurement and construction management (EPCM) for the balance, in line with the implementation strategy and schedule as described in Section 13.0 of this report.

Preliminary engineering drawings have been produced with sufficient detail to permit the assessment of the engineering quantities for earthworks, concrete, steelwork, mechanical and electrical for the crushing plant, processing plant, conveying systems and infrastructure.

The updated capital costs for processing plant and infrastructure have been grouped by initial capital and sustaining capital for the purposes of the financial analysis.

A summary of the initial and sustaining capital cost for the Tulu Kapi Project is provided in Table 11.2. The cost includes the construction, pre-development and commissioning period. The estimates include direct costs, indirect costs and contingency.

11.2.1 Summary

The overall project CCE was compiled by Lycopodium from inputs developed by Lycopodium, Knight Piésold and KEFI. The CCE reflects the Project scope as described in this study report. The primary contributors listed in Table 11.1 were responsible for the preparation of area capital costs.

Table	11	.1	
-------	----	----	--

Capital	Cost	Contributors
---------	------	--------------

Area	Contributors Name
EPC Total Price	Lycopodium Pty Ltd – based on Front-End Engineering and Design (FEED)
EPCM Scope of Works (Bulk Earthworks)	Lycopodium Pty Ltd / Knight Piésold Pty Ltd
First Fill and Spares	Lycopodium Pty Ltd – based on Front-End Engineering and Design (FEED)
Mining Cost	Mining and Cost Engineering Pty Ltd (MACE) –based on contract mining proposal
Offsite Infrastructure Cost	KEFI
Owners Cost	KEFI
Other Cost	KEFI
Taxes	Lycopodium Pty Ltd calculation

Table 11.2

Capital Cost Estimate Summary - April 2017

Description	Initial Capital US\$	Sustaining Capital US\$	Total Capital US\$
EPC Total Price	69,424,841		69,424,841
EPC Adjustment resulting from scope change	1,472,515		1,472,515
Revised EPC Value	70,897,356		70,897,356
EPCM Scope of Works			0
Bulk Earthworks	14,582,574	10,506,045	25,088,619
Other Allowances	970,000		970,000
Contingency	3,110,515	2,101,209	5,211,724
First Fill and Spares	4,337,446		4,337,446
Mining Cost	15,823,000	1,097,000	16,920,000
Offsite Infrastructure Cost	15,671,000	473,000	16,144,000
Owners Cost	18,111,986		18,111,986
Other Cost	17,739,555	830,000	18,569,555
Closure Provision		9,483,393	9,483,393
Total	161,243,432	24,490,647	185,734,079

11.2.2 Potential Capital Cost Tax Implications

In the preparation of the CCE the final tax implications for the project remained uncertain despite some broad undertakings in the Mining License that exceptions may be provided. For the purpose of clarity and identification of this risk element, below is an outline of potential tax that, from a conservative view point, may be applicable. Ongoing direction and advice will be required from authorised tax professionals as the project progresses.

Description	Initial Capital (US\$ '000)
EPC	
Offshore Services – No WHT claimable: 15% / (1 - 28% - 15%) = 26.3%	1,653
Offshore Supply - 3% WHT (Goods imported by KEFI will attract a 3% WHT however KEFI should qualify for an exemption)	1,386
Onshore Services 15% VAT and 2% WHT	3,616
Onshore Supply (assumed all offshore) 15% VAT	0
Onshore Supply - Bulk Earthwork contractor taxes. 15% VAT	1,900
Onshore Services - Bulk Earthwork contractor taxes. 15% VAT and 2% WHT	326
Mining Costs	2,373
Offsite Infrastructure Costs	2,351
Owners Costs	2,717
Other Costs	2,661
Total	19,370

Table 11.3	Potential Capital Cost	Tax Implications
------------	------------------------	-------------------------

11.3 Capital Costs Exclusions

The estimate is expressed in United States dollars and the following items are not included in the capital estimate:

- Sunk costs that are expected to be incurred prior to project implementation.
- Interest and financing costs.
- Escalation beyond first quarter 2017 for the updated Capital costs.
- Escalation beyond first quarter 2015 for the Capital costs which have not been updated (i.e. Grid Power line, closure costs).
- Force majeure occurrences.

Scheduled delays such as those caused by the following:

- Scope changes.
- Unidentified ground conditions.
- Labour disputes.

- Environmental permitting activities.
- Currency fluctuations.
- Import duties.
- Permits.

11.4 Capital Cost Accuracy

The capital cost estimate included in this Study has been developed to a level sufficient to evaluate the project, various development options, and the potential overall project viability.

The accuracy range of the capital cost is considered to be plus or minus 15%. The accuracy prediction for the Tulu Kapi Project takes into account the current state of engineering and procurement. 100% of FEED has been completed. For the FEED study, budgetary quotations were obtained for commodities and labour, and process equipment.

11.5 Process Plant Capital Cost Estimate

11.5.1 Process Plant Capital Cost Summary

Offshore Supply Contract				
ltem	Description	Compensation Model	Total (US\$ '000)	
SP1	Offshore Technical Services	Fixed Price	6,285	
SP2	Offshore Equipment Supply	Fixed Price	41,870	
CP1	Offshore Contract Price		48,155	
SP3	Transport & Logistics Services	Provisional Sum	5,262	
SP4	Take Out Liner Handler		1,300	
SP5	Take Out Potable Water Treatment		343	
Onshore Construction Contract				
ltem	Description	Compensation Model	Total (US\$ '000)	
SP6	Onshore Construction	Fixed Price	21,270	
CP2	Onshore Contract Price		21,270	
SP7	Onchora Dravisian of Sand for Concrete			
	Onshore Provision of Sand for Concrete	Provisional Sum	220	
CP1+CP2	Total Price	Provisional Sum	220 69,425	
CP1+CP2 SP8	Total Price Coordination Agreement Clarifications	Provisional Sum Fixed Price	220 69,425 375	
CP1+CP2 SP8 SP9	Total Price Coordination Agreement Clarifications Escalation (from Original submission to Current only)	Provisional Sum Fixed Price Fixed Price	220 69,425 375 1,098	
CP1+CP2 SP8 SP9 CP3	Total Price Coordination Agreement Clarifications Escalation (from Original submission to Current only) EPC Adjustment resulting from scope change	Provisional Sum Fixed Price Fixed Price	220 69,425 375 1,098 1,473	

Table 11.4 Process Plant Initial Capital Cost Summary

The Contract Price CP2 includes line item SP7 as a Provisional Sum.

The Contract Price CP1 includes line item SP3 as a Provisional Sum.

The Contract Price CP1 includes line items SP4 and SP5.

11.5.2 Basis of Estimate and Assumptions for Processing Plant Capital Cost

The following technical documents developed during FEED form the basis of the capital cost estimate:

- Process plant design criteria.
- General layouts of the process plant.
- Process flow diagrams.
- Process plant equipment list.
- Piping and instrument diagrams.
- Instrument lists.
- Various discipline material take-off documents.
- Electrical single line diagrams.
- Quotations from vendors on major mechanical and/or process equipment.
- Project Implementation Schedule.

The following assumptions have been made in the preparation of this estimate:

- Site work will be continuous and not be constrained by the owner, war, riots, terrorism or political interference.
- The construction schedule as presented in Section 13.0.
- Land within the mine licence and access road areas will be provided encumbrance free.
- The chosen site will be suitable for the foundations in accordance with the findings of the geotechnical investigation report and no specific problems will arise from excessive precipitation or groundwater, and no rock excavation will be required during excavation.
- An allowance has been made for the application of Ethiopian tax. Confirmation of the applicable tax implications will be required prior to contract award.
- The EPC Total Price is based on an insurance deductible of USD 50,000 per any one occurrence.
- The Total Price is based on the exchange rates in Table 11.5.

- KEFI at no cost to Lycopodium will provide translation of any documents from English to any other language as may be required. All documents and communications produced by Lycopodium will be in English.
- No allowance has been made for political risk insurance cover.
- It has been assumed that, borrow pits for all imported fill, including but not limited to structural fill, sand and gravel, will be within 5 km of the plant site.
- It has been assumed that spoil and wastage material arising from the bulk earthworks will be able to be deposited within 5 km of the plant site.
- It has been assumed that adequate area is available for the storage of topsoil within 500 m of each area.
- An allowance has been made for a pontoon decant arrangement in the TSF for the first year with a further allowance in the sustaining capital cost to relocate the mechanical and electrical, instrumentation and controls components to a decant tower, which has also been provided for in the estimate.
- Lighting design and subsequent estimate has been based on the requirements as per Australian Standards
- All site security during construction will be provided by KEFI Minerals. Costs for such are included in the owners cost.
- All transfers from the airport in Addis Ababa to KEFI guest house and site will be provided by KEFI Minerals. An allowance for associated costs are included in the owners cost.
- All dust suppression during construction and commissioning will be provided by KEFI Minerals. An allowance for associated costs is included in the owners cost.
- It has been assumed that construction water will be made available at no cost to Lycopodium within the plant site from the early bore development utilising the existing bores at the site. An allowance has been included in the owners cost.
- An allowance has been made for foundation improvement at the SAG Mill and CIL tank area only which has been based on the limited geotechnical data available at the time of preparation of the estimate. Confirmation of requirements will be required upon receipt of adequate geotechnical data.
- In order to meet the water requirements for start up, the construction of the Water Dam has been schedule to allow for the collection of 2 wet seasons (May to October) of rain.
- Allowances have been made for the following geotechnical tests including associated laboratory testing.
 - 6 off 30 m boreholes

- 11 off 20 m boreholes
- 60 off test pits.
- Allowances for management, attendance and supervision of the geotechnical investigation and bulk earthworks contract have been for an assumed 8 month combined period.
- The bulk earthworks estimate is based on the provision of quantities as outlined below:
 - Mine Camp based on KEFI Minerals supplied quantities.
 - Plant Access Roads based on KEFI Minerals supplied quantities.
 - Bush Stripping and Clearing based on KEFI Minerals supplied quantities.
 - Plant, Administration, Mine Laydown based on Lycopodium preliminary layout.
 - Internal Plant Access Roads allowance only.
- Allowance has been made for one fulltime on site environmental officer during construction on the basis that the Lycopodium standard procedures will be sufficient to satisfy KEFI environmental requirements.
- It has been assumed that if there is a need to transfer water from Water Dam 2 to Water Dam 1, this would be undertaken by mine operations using a pit dewatering pump and hose or the like.
- It has been assumed that the TSF Stage 1 will be for the first year of operation only.
- It has been assumed that Stage 2 onward lifts of the TSF will be undertaken by the proposed mining contractor AMS and has been estimated accordingly utilising rates supplied by AMS.

11.5.3 Estimate Parameters

The basic parameters of the estimate are as follows:

- Estimate Accuracy: +/- 15%
- Estimate Currency: United States Dollars
- Estimate Date: 11 April 2017

11.5.4 Exchange Rates

The EPC cost is based on the following exchange rates as shown in Table 11.5 and the price will be subject to revision prior to Award of Contract pending final agreement of the exchange rates.

Currency	Rate of Exchange (US\$ bid)	Currency Breakdown (%)
United States Dollars (USD)	1.000	31.105
Australian Dollars (AUD)	1.3161	22.830
Euro (€)	0.897	29.531
South African Rands (R)	14.388	16.624
Ethiopian Birr (ETB)	22.3	0

Table 11.5Rate of Exchange Applied

11.5.5 Sources of Estimate Information

The CCE is based on inputs from various sources as shown in Table 11.6

Table 11.6	Source of Estimate Information

Description	Quantities	Rates	Estimate	Construction Management
EPC Value		-	Lycopodium	
Bulk Earthworks				
TSF				
TSF Construction Stage 1	Knight Piésold		Lyc	opodium
TSF Construction Stage 2 - 10	Knight Piésold		Lyc	opodium
Sediment Control	Knight Piésold		Lyc	opodium
Decant System	Knight Piésold	Lycopodium		
Decant Pontoon to Tower Mechanical and Electrical Allowance	Lycopodium			
Raw Water				
Water Dams Construction	Knight Piésold Lycopodium			opodium
TSF and RW Dam Engineering, Testing, Supervision	•			
Foundation improvement - Design	Knight Piésold			d
TSF and Raw Water Engineering and Design including Project Management	Knight Piésold			d
Construction Material Assessment	Knight Piésold			
TSF and RW DAM Site Investigation	Knight Piésold			
General Site Investigation	Knight Piésold			
Geotech Testing Supervision	Knight Piésold			
Bore Hole Testing	Knight Piésold			
Engineering Interface and Construction Management of Bulk Earthworks	Lycopodium			

Description	Quantities	Rates	Estimate	Construction Management
Infrastructure	•	•	•	
Mine Camp	KEFI	EFI Lycopodium		
Plant Site Access Road (within Mining Lease only)	KEFI		Lyc	opodium
Plant, Administration And Mining Contractor Laydown Pad			Lyc	opodium
Bush Stripping and Clearing for Top Soil Storage Areas	KEFI		Lyc	opodium
Temporary Access Road for Tailings, Decant, RW lines		•	Lycopodium	
Plant Found	ation Improveme	ent		
Foundation Improvement - SAG Mill	Knight Piésold		Lyc	opodium
Foundation Improvement - CIL Tank Area	Knight Piésold		Lyc	opodium
Other	Allowances			
Early Bore Development - Make up Water - Allowance			Lycopodium	
40 person Fly Camp for Initial Construction			Lycopodium	
Contingency	•			
Contingency EPCM scope			Lycopodium	
First Fill and Spares				
Commissioning Spares	Lycopodium			
Operational Spares			Lycopodium	
Insurance Spares			Lycopodium	
First Fills	Lycopodium	KEFI		Lycopodium
Opening Stock	Lycopodium KEFI Lycopodium			Lycopodium
Mining Cost				
Owner's Mining Equipment			MACE	
Capital Development			MACE	
Pre-strip			MACE	
Owner's Mining Team			KEFI	
Offsite Infrastructure Cost			KEFI	
Overhead Power Lines			KEFI	
Mine Camp			KEFI	
Access Roads and Airstrip			KEFI	
Owners Cost			KEFI	
Other Cost			KEFI	
Losses During Ramp Up / Working Capital	KEFI			
Relocation / Resettlement	KEFI			
Environmental Management	KEFI			
Additional Contingency	KEFI			
Closure Provision				
TSF Closure	Lyce	opodium		KEFI
Mine Waste Dump Closure	KEFI			

Description	Quantities	Rates	Estimate	Construction Management
Site Clean Up	KEFI			
Equipment	KEFI			

11.5.6 Quantity Development

The project works have been quantified to represent the currently defined scope of work and, where necessary, to enable the application of rates to determine costs. Allowances for compaction, waste, rolling margin and the like are included in the build-up of unit costs.

Quantity information has been derived from a combination of sources and categorised to reflect the maturity of design information as follows:

- Take-off from detail design documents specific to the Project, e.g. developed drawings, equipment lists.
- Take-off from engineered conceptual designs, e.g. engineering sketches or descriptions.
- Estimated from plot plans, general arrangements or previous experience.
- Factored from historical project information based on capacity or similar metric.

11.5.7 Pricing Basis

Estimate pricing has been derived from a combination of the following sources:

- KEFI self-perform budget estimates.
- Project specific budget quotations.
- The Consultant's database.
- Estimated or built-up rates.
- Factored from similar works.

Pricing has been identified by the following cost elements, as applicable, for the development of each estimate item.

11.5.8 Supply

Plant Equipment

This component represents prefabricated, pre-assembled or off-the-shelf types of mechanical or electrical equipment items, either fixed or mobile. Pricing is inclusive of all costs necessary to purchase the goods ex-works including delivery to site (unless otherwise stated) as well as any required vendor representation, operating and maintenance manuals and commissioning spares.

Bulk Materials

This component covers all other materials, normally purchased in bulk form, for installation on the project. Costs include the purchase price ex-works, any off-site fabrication, transport to site, unless otherwise stated, and over-supply for anticipated wastage.

Installation

This component represents the cost to install the plant equipment and bulk materials on site or to perform site activities. Installation costs are further divided between direct labour, equipment and contractors' indirects.

The labour component reflects the cost of the direct workforce required to construct the project scope. The labour cost is the product of the estimated work hours spent on site multiplied by the cost of labour to the contractor inclusive of overtime premiums, statutory overheads, payroll burden, and contractor margin. The labour and cost component for earthwork, concrete, structural steel, platework and piping was pre-approved by both parties.

Direct hours, by the construction workforce, for all disciplines, for installation are based on Australian norms.

The equipment component reflects the cost of the construction equipment and running costs required to construct the Project. The equipment cost also includes cranes, vehicles, small tools, consumables, PPE and the applicable contractor's margin.

Contractors' indirect costs encompass the remaining cost of installation and include items such as offsite management, onsite staff, supervision above trades level, crane drivers, mobilisation, demobilisation, R&Rs, meals, accommodation costs and the applicable contractors' margin.

11.5.9 Field Indirects

The estimate includes costs for the establishment of temporary facilities required to support the onsite construction of the project. Owner's Costs include the following cost elements:

- Owner's management team for project implementation.
- Owner's management team and associated costs for 'self perform' scopes of work.
- Owner's technical consultants.
- Owner's management team consumables and site support costs such as travel and accommodation.
- Offsite project office inclusive of rental, outgoings, equipment and furnishings.
- Project computing requirements.
- Project insurances including contractor's all-risk, public liability and marine insurance as well as insurance deductibles. All other insurance requirements such as professional indemnity, workers compensation and automotive etc., are deemed to be included in the discipline unit cost rates.
- Owner's overhead distributables.

11.6 Onsite Infrastructure Capital Cost Estimate

11.6.1 Onsite Infrastructure Capital Cost Summary

Table 11.7 Site Infrastructure and Bulk Earthworks Costs Summary

Description	Initial Capital Cost (US\$,000)	Sustaining Capital Cost (US\$,000)	Total Capital Cost (US\$,000)
TSF Construction Stage 1	5,292		5,292
TSF Construction Stage 2 - 10		9,967	9,967
Sediment Control	174		174
Decant System		388	388
Decant Pontoon to Tower Mechanical and Electrical Allowance		150	150
Subtotal TSF	5,466	10,506	15,972
Water Dams Construction	3,774		3,774
Subtotal Raw Water	3,774		3,774
Foundation improvement - Design	10		10
TSF and Raw Water Engineering and Design including Project Management	172		172
Construction Material Assessment	23		23
TSF and RW DAM Site Investigation	33		33
General Site investigation	37		37
Geotech testing Supervision	726		726
Bore hole testing	183		183
Engineering Interface and Construction Management of Bulk Earthworks	736		736
Subtotal TSF and RW Dam Engineering, Testing, Supervision	1,919		1,919
Mine Camp	169		168
Plant Site Access Road (within Mining Lease only)	735		734
Plant, Administration and Mining Contractor Laydown Pad	1,736		1,735
Bush Stripping and Clearing for Top Soil Storage Areas	103		102
Temporary Access Road for Tailings, Decant, RW lines	150		150
Subtotal Infrastructure	2,892		2,892
Foundation Improvement - SAG Mill	187		187
Foundation Improvement - CIL Tank Area	344		344
Subtotal Plant Foundation Improvement	531		531
Early Bore Development - Make up Water - Allowance	250		250
40 Person Fly Camp for Initial Construction	720		720
Subtotal Other Allowances	970		970
Subtotal Plant and Site Infrastructure	15,552	10,506	26,058

Table 11.8Site Infrastructure and Bulk Earthworks Contingency Considerations

Description	Initial Capital Cost (US\$,000)	
Contingency Considerations	3,111	
Bulk Earthworks Contingency	3,111	

11.7 Mining Capital Cost Estimate

The information within this section has been provided by KEFI and has not been reviewed in detail by Lycopodium.

11.7.1 Basis of Estimate and Assumptions for Mine Capital Cost

The following technical documents form the basis of the capital cost estimate for mining:

- Mine design for various stages of the Tulu Kapi pit.
- Waste rock landform designs and staged development.
- Mining sequence of the Tulu Kapi pit and associated waste rock landform construction.
- The life-of-mine material movement schedule informed by the mining sequence.
- Pricing provided by the preferred contractor.
- Historical costs for minor plant and equipment or updated vendor quotations.
- Provisional sums for minor costs.

The following assumptions were made in the preparation of this estimate:

- Equipment delivery and commissioning timeframes can be achieved.
- Payments are made upon commissioning of equipment.
- Adequate space is available for large machines to be reconstructed on site.

11.7.2 Mining Infrastructure Capital Cost

Description	Initial Capital Cost (Incl. Cont.) (US\$,000)	Sustaining Capital Cost (US\$,000)	Total Capital Cost (US\$,000)
Mining Equipment / Fleet			
Equipment (incl. delivery)	527	1,097	1,624
Subtotal Mining Equipment	527	1,097	1,624
Capital Development			
Mining Infrastructure	1,851	-	1,851
Mining Contractor Mobilisation / Demobilisation	4,809	-	4,809
Load / Haul	729	-	729
Drill and Blast	460	-	460
Fixed Costs	2,094	-	2,094
Daywork Provision	872	-	872
Other Capital Development (Waste Dumps and ROM Pad)	2,023	-	2,023
Subtotal Capital Development	12,838	-	12,838
Owner's Team			
Light Vehicles Operating Costs	54	-	54
Mining Management Labour	165	-	165
Mine Technical Service Dept Labour	385	-	385
Mine Operations Labour	91	-	91
Mining Dept Overheads and Equipment	1,763	-	1,763
Subtotal Owner Team	2,458	0	2,458
Total Mining	15,823	1,097	16,920

Table 11.9 Mining C

Mining Capital Cost Estimate Summary

11.7.3 Mining Equipment

Formal enquiries were issued to suppliers. The quotations provided underwent an adjudication process for selection of preferred supplier. This cost was thereafter used for estimation of costs. Table 11.10 gives a breakdown of equipment included in cost estimate.

Description	Initial Capital Cost (Incl. Cont.) (US\$,000)	Sustaining Capital Cost (US\$,000)	Total Capital Cost (US\$,000)
Light Vehicles	294	1,031	1,325
Computers and Software / Software Licensing	131	66	197
Engineering / Geology Equipment	102	0	102
Mobilisation of Explosives Contractor	0	0	0
Total Capital Development	527	1,097	1,624

Table 11.10	Mining Equipment Cost	Estimate
-------------	-----------------------	----------

11.7.4 Light Vehicles

The selection of light vehicles below was based on the proposed organogram for the mining department. The following vehicles were allowed for:

Mining Management	Single Cab Utes	Twin Cab Utes	Land Cruiser Wagon	Total
Operations Manager			1	1
Technical Services Superintendent			1	1
Mining Engineer – Production			1	1
Mining Engineer – Drill and Blast			1	1
Senior Geologist			1	1
Mine Geologist		1		1
Senior Mine Surveyor		1		1
Mine Surveyors				
Field Technicians		1		1
Mine Operations Superintendent			1	1
Mining General Supervisor		1		1
Total	0	4	6	10

11.7.5 Mining Contractor Infrastructure

The following mine facilities have been allowed for as part of the infrastructure:

- Contractor's mine office.
- Induction and training facilities.
- Contractor's Mining Equipment Maintenance workshop including tyre change bay, lube bay, light vehicle maintenance facility and secured stores facility.
- Heavy vehicle and light vehicle wash-down bay.
- Lubricant storage and dispensing facility.
- Emulsion plant construct and commission.
- Magazine facility construct and commission.
- Roads, hardstands and signs and traffic controls in and around the office and workshop facilities (excluding haul roads).

The facilities will be provided and erected by the Mining and Explosives contractors. KEFI will perform site preparation. An allowance for the site preparations has been made as part of the bulk earthworks.

11.7.6 Mining Equipment Refuelling Facility

The fuel storage facility, which is situated adjacent to the Mine workshop, will have sufficient capacity for approximately 2.5 month's supply for the mining fleet, estimated to be approximately 1050 m³ based on an approximate consumption of 15,000 L per day, along with reserve capacity for emergency pumps and generators.

At present a proposal has been received through negotiation with a global fuel supply company to provide this facility and supply fuel (AGO - Automotive Gas Oil) and lubricant to Tulu Kapi.

The global fuel supply company is able to supply all necessary lubricants including diesel engine oil, transmission oil, steering oil, grease, brake fluid, coolant, hydraulic and gear oil, compressor oil, pneumatic tool oil, and heat transfer oil.

Based on the current proposals, the fuel supplier will provide and establish sufficient storage for an initial 150 m³ facility at Tulu Kapi along with high flow rate dispensing pumps, services for used oil collection.

In addition the fuel supplier will ensure the necessary QC protocol on site to maintain the quality and cleanliness of fuel distribution, provide a used oil analysis service to monitor service intervals and efficiency, and used oil collection and disposal service. Diesel fuel will be stored in double-skinned, below ground tanks in a designated fuel compound with re-fuelling station. Tanks will have an external fuel gauge and appropriate signage.

Fuel will be delivered by 40,000 L road tankers at a sufficient rate to ensure that supply is maintained.

The US\$518k costs associated with establishing the bulk storage site has been included as part of the owners cost as shown in Table 11.15.

11.7.7 Mining Contractor Mobilisation

The mining contractor and explosive services contractor will mobilise to site approximately 3 to 6 months prior to plant commissioning. The majority of the earthmoving fleet required for this operation will be mobilised at this time. An increase in material movement during production will require additional contractor fleet to be mobilised to site.

11.7.8 Pre-production and Pre-strip Capital Cost

Mining pre-production allows for the generation of waste rock required for the construction of the following site infrastructure:

- Stage 1 ROM pad and stockpiling area.
- Mine access road and haul roads.
- Mine bench establishment in preparation for production.

Haul road construction also includes provision for forming the road and the placement of road base material. Compaction is expected to be achieved through movement of heavy mine vehicles over the surface.

The pre-production works also allows for clearing and grubbing and top soil removal over the borrow area, ROM pad and mine access and haul roads.

A short pre-strip phase is included in the mining costs to develop the pit and create sufficient surface stockpiles so that ore feed can be maintained to the process plant over the life of the project. It also enables certain high-grade areas to be brought forward to aid project cash flow.

11.7.9 Pit Dewatering Capital Cost Allowance

Pit dewatering will be carried out by the contractor. The contractor will provide all pumps, pipes and associated equipment. Pit water will be discharged into the Water Dam.

The costs for the pit dewatering system installation and operations have been included in the contractor's fixed costs.

11.7.10 Explosives Supply Capital Cost Allowance

A bulk manufacturing facility and a mobile manufacturing unit will be supplied by a contractor (potentially AEL Mining Services East Africa -AEL) at a monthly rental cost.

It is proposed to set up a supply and storage site on the mine from where the bulk explosives service will be managed. The site will consist of a storage facility for chemicals, emulsion manufacturing facility and explosives magazine complex. Initially, for the first period, one twenty-five tonne Mobile Manufacturing Unit (MMU) will be deployed together with an explosives delivery vehicle.

A maintenance workshop, ablution and change house, offices and magazine will form part of the start-up phase and will be provided by KEFI.

KEFI will perform the site preparation and the civil construction as part of the construction phase and costs have been accounted for in the bulk earthworks capital cost.

11.7.11 Mobile Crushing Plant

The contractor will mobilise a crushing plant to site to crush rock for roadbase and stemming required for the open pit operations.

11.7.12 Owner's Team

From the initiation of the project up to the commencement of processing operations, the operating costs incurred by the project are included in the capital cost estimate.

Owner's pre-productions costs comprise the following:

- Mining department labour costs prior to commencement of production including travel.
- Vehicle running and maintenance costs.
- The cost of other administrative support.

The owner's mining team will be mobilised to site 3 to 6 months prior to commissioning.

11.7.13 Mining Sustaining Capital

Sustaining capital provisions were included for the replacement of light vehicles every 3 to 4 years.

The contractor's replacement capital provisions were allowed for as amortised costs in its unit rates for mining. Through discussion with the preferred contractor it is understood that major fleet will not require replacing during the life of the operation.

11.7.14 Process Plant Indirect Costs

Description	Initial Capital Cost (US\$,000)	Sustaining Capital Cost (US\$,000)	Total Capital Cost (US\$,000)
Processing Plant Indirect Costs			
Light Vehicles Plant, G&A (excluding Mining)	157		157
Other Mobile Equipment (excluding Mining)	880		880
55 t Crane	631		631
Other Construction Equipment	270		270
Subtotal Plant and Site Infrastructure	1,938		1,938

	Table 11.12	Process Plant Indirect Costs
--	-------------	------------------------------

Formal enquiries were issued as part of the 2015 DFS to vehicle suppliers. The quotations provided underwent an adjudication process for selection of a preferred supplier. In 2016 KEFI revalidated the light vehicle pricing with enquiries to the market. These updated costs are reflected within this estimate.

Light Vehicles

The selection of light vehicles below was based on the proposed organogram for process plant and G&A. The following vehicles were allowed for:

- LDV Hilux Single Cab 4.
- LDV Hilux Double Cab 10.
- Land Cruiser 200 VX 1.
- Land Cruiser 70 Troop Carrier 2.
- Fire Truck (3500 L Water) 1.
- Land Cruiser 70 Ambulance 1.

Mobile Equipment

The fleet that will form part of the plant, general maintenance and stores / warehouse heavy vehicles is as follows:

- Telehandler 1.
- Front-End Loader (Cat 938K or equivalent) 1.
- 10 t truck with mounted crane 1.

- Skid Steer Loader JC45G 1.
- Crane 55 t 1.
- Extendable Forklift 1.
- Tractor 1.
- Trailer 1.

Personnel Transport

The transport listed below will be used to transport personnel from the staff camp to the mine site. Light vehicles will supplement the buses if required.

- Bus 15 people 2.
- Bus 60 people 1.

11.7.15 Process Operational and Insurance Spares

Description	Initial Capital Cost (US\$,000)	Sustaining Capital Cost (US\$,000)	Total Capital Cost (US\$,000)
First Fills (including transport)	537	-	537
Plant Operating Spares	1,750	-	1,750
Plant Insurance Spares	875	-	875
Plant Operating Consumables (1 ½ month supply)	1,176	-	1,176
Subtotal Plant and Site Infrastructure	4,337		4,337

The spares have been calculated by the application of a benchmark percentage determined from actual historical data compiled by Lycopodium Minerals Pty Ltd.

Also included in the costs are three month supply of reagents and consumables and plant first fills.

A stores / warehouse building, located on the plant infrastructure terrace, will be used to house the spare parts and consumables for the process plant. Reagent storage will have a separate area.

11.7.16 Insurance

Insurance has been estimated at US\$1,750k (approximately 1.2% of the total project capital cost).
11.8 Offsite Infrastructure Capital Cost Estimate

The information within this section has been provided by KEFI and has not been reviewed in detail by Lycopodium.

11.8.1 Offsite Infrastructure Capital Cost Summary

Description	Initial Capital Cost (US\$,000)	Sustaining Capital Cost (US\$,000)	Total Capital Cost (US\$,000)
Overhead Grid Power Lines			
Supply and Construct Overhead Power Lines	9,812		9,812
Design and Supervision (by EEPCo)	324		324
Environmental	391		391
Subtotal Overhead Grid Power Lines	10,527	-	10,527
Access Roads and Airstrip			
Main Access Road	3,984		3,984
Southern Bypass Road	758		758
Northern Bypass Road		473	473
Airstrip	277		277
Airstrip Sundries – Fence, wind sock, etc	125		125
Subtotal Access Roads and Airstrip	5,144	473	5,617
Subtotal Plant and Site Infrastructure	15,671	473	16,144

Table 11.14Offsite Infrastructure Costs

11.8.2 Overhead Power Lines Capital Cost

The overhead lines will be designed and constructed generally in accordance with EEPCo code of practice.

The costs for the developed of the 47 km overhead power line connecting the mine site to the Ethiopian power grid from the 2015 DFS have been used. The quote of \$11.581 million (including 10% contingency) includes supply, construction, design and supervision along with environmental costs.

Formal enquiries were issued to reputable overhead power line suppliers. The quotations provided underwent an adjudication process for selection of the preferred vendor. This cost was thereafter used for estimation of overhead power line cost. An estimate for the design has been carried out by EEPCo.

11.8.3 Access Roads Outside the Mining Concession Capital Cost

A total of 19.2 km of roads, 14.2 km site main access, 4.0 km of southern concession bypass road and 1.0 km of northern concession bypass road will be required. The cost of constructing these roads is including in the initial capital costs except for the northern bypass road which is built later and included in sustaining capital costs. The northern bypass will not be required during the development phase of the project.

The optimised route following the 2015 DFS and revised cost have been based on unpaved Design Class DS6 road for Mountainous Terrain in accordance with the Ethiopian Roads Authority's Design Manual for Low Volume Roads.

11.9 Owner's Costs and Working Capital

The information within this section has been provided by KEFI and has not been reviewed in detail by Lycopodium.

11.9.1 Owner's Cost

From the initiation of the project up to the commencement of processing operations, the operating costs incurred by the project are included in the capital cost estimate.

Owner's pre-productions costs comprise the following:

- General and administration salaries, including owner's project team, HSSE department finance, procurement and human resources.
- Mining department labour costs prior to commencement of production (included under mining owner's team).
- Plant labour costs prior to commencement of plant commissioning.
- Costs associated with the administration of an offsite office in Addis Ababa.
- Camp catering costs.
- Training package implementation and contractor engagement.
- Preparations for contractor managed and operated onsite laboratory.
- Vehicle running and maintenance costs (except mining vehicles which have been included under mining owner's team).
- The cost of other administrative support.
- Installation of bulk fuel storage facility along with high flow rate dispensing pumps and services for used oil collection.

•

Exploration Camp upgrade for initial construction.

Description	Initial Capital Costs (US\$,000)	Sustaining Capital Cost (US\$,000	Total Capital Cost (US\$,000)
Owner's Costs - Site			
Owner's Project Management	1,498		1,498
G&A Labour	1,661		1,661
Processing Labour and Maintenance Labour	505		505
Owner's Project Management - Offsite Accommodation and Travel	147		147
Owner's Project Management - Catering	105		105
Assay Laboratory (Contractor Mobilisation)	245		245
Maintenance	78		78
Supplies and Spare Parts	245		245
Other Site Admin Costs	78		78
Security Contractor	315		315
Exploration Camp Upgrade	402		402
EPC Contractor Catering Cost Allowance	1,391		1,391
Mining Contractor Catering Cost Allowance	590		590
Bulk Fuel Storage Infrastructure	518		518
Training	2,000		2,000
Subtotal Owner's Cost - Site	9,779		9,779
Owner's Costs – Offsite			
Insurance	1,756		1,756
Plant indirects	1,937		1,937
Addis Office Costs (including salaries)	4,640		4,640
Subtotal Owner's Costs – Offsite	8,333		9,633
Total	18,112		18,112
Owner's Costs – Other			
Losses During Ramp Up / Working Capital	3,434		3,434
Relocation / Resettlement	10,000	830	10,830
Environmental Management	1,051		1,051
Additional Contingency	3,254		3,254
Closure Cost Provision	-	9,483	9,483
Subtotal Owner's Costs - Other	17,740	10,313	28,053
Total	35,852	10,313	46,165

Table 11.15Owner's Costs

11.9.2 Relocation and Resettlement Updated Capital Cost Estimate Summary

The development of the Tulu Kapi Gold Mine will require relocation of some local residents. To provide for crop compensation, property compensation, relocation, infrastructure and livelihood reestablishment \$10.8 million has been allocated based on quotations, baseline studies and information available from the Ethiopian federal statistics on crop yields and market price.

Capital Comparison	2015 DFS Total (US\$,000)	2016 Estimate (US\$,000)	Difference (US\$, 000)
Relocation, Resettlement	7,500	10,000	2,500
Livelihood Restoration	1,245	830	-415
	8,745	10,830	2,085

KEFI engaged the services of two separate organizations, Pact and ICRAF, to audit and evaluate the Resettlement Action Plan (RAP) cost.

Pact is an international development organisation focused on livelihoods, natural resource management and health programs, working with over 10,000 partners in 25 countries. World Agro Forestry Centre (ICRAF) is also an international development organisation. Their proposed livelihood restoration programmes (LRP) have dual focus on options of agricultural intensification and diversification to support traditional farming systems and boost productivity, and ensuring landscape health and reducing environmental degradation.

A significant expenditure increase has been the inclusion of 360 residential buildings to be constructed in the resettlement areas. KEFI has committed to providing these buildings through its own initiative as these structures are not a mandatory requirement of the Ethiopian Government.

There are other minor expenditures included in the new estimate such as grave and church relocation and financial training. All the costs are based on included quotes and discussions with local businesses.

The initial timing of a portion of the 2015 DFS Livelihood Restoration expenditures has been rescheduled to be included in the 2016 initial capital requirements. The value is US\$415,000.

A more detailed breakdown of the adjusted costs associated with the Relocation and Resettlement Programme is given in Table 11.17.

Г

Τι	ılu-Kapi Gold Pro	oject - Social Performance	Capital Allocation	Capital Budget by Year (US\$)		⁄ear (US\$)	Total (US\$)
F	Program	Category	Breakdown	2016-2017	2017-2018	2018-2019 (Sustaining Capital Cost)	By Program
1. RAP	A. Compensation	Compensation (inc. 20% variation based on Oct	Phase 1 Estimate	3,291,601			
		2014 estimate from KEFI DFS RAP)	Capacity building and resources for Woreda	50,000			
			Phase 2 Estimate		4,028,399		
			Capacity building and resources for Woreda		50,000		
			Contingency			410,000	7,830,000
	B. Relocation and	Relocation logistics	Phase 1	150,000			
	Infrastructure development		Phase 2		150,000		
		Relocation of churches and	l graves	80,000			
		Archaeological survey		50,000			430,000
		Infrastructure development support	Construction of 360 residential buildings	350,000	350,000	100,000	
			Development of water infrastructure Agricultural land preparations	200,000	50,000		
				250,000	50,000		
		Contingency for governmer	nt provided infrastructure		200,000	50,000	1,600,000
	C. Livelihood	Financial training, capacity finance	building and micro-	80,000	60,000	50,000	
	Restoration	Agricultural diversification a	and intensification	100,000	80,000	60,000	430,000
2. Suppl Enterpris Develop	y Chain se ment	Business Development Sup	oport	50,000	40,000	30,000	120,000
3. Social Manager	Impact nent	Influx Management Plan		40,000			
Evaluation and mo		Evaluation and monitoring			40,000		
		Provision for mitigating soc	ial impacts measures	20,000	30,000	30,000	160,000
4. Comm Develop	nunity ment	Consultation, Design, Incor Foundation	poration of KEFI	40,000			
		KEFI Foundation contribution	on		120,000	100,000	260,000
		Total By Year (US\$)		4,751,601	5,248,399	830,000	10,830,000

Table 11.17 **Relocation and Resettlement Cost Breakdown**

11.9.3 Environmental Management Capital Cost Estimate

A provision has been made to further develop the Environmental Management capacity by the continuing development of management plans prior to production. An allocation to develop the environmental plans and undertake predictive modelling of TSF is given in Table 11.18.

KEFI engaged the services of Ramboll Environ (Seattle, Washington) to audit and evaluate the environmental management cost allocation used in the 2015 DFS and the provision has been adjusted accordingly.

Cost has been allocated based on budget quotations, recommendations from Ramboll Environ and the future studies required during the project implementation phase. The cost estimate has been increased from US\$0.525M to US\$1.051M. The significant increase is mainly due to the additional predictive modelling of TSF design to meet ICOLD, ANCOLD4, or other internationally recognised standards;

Description	Updated Initial Capital Costs (US\$,000)	2015 DFS Initial Capital Costs (US\$,000)
Management of Update Baseline Studies	77	
Ecology / Biodiversity and Water Resources Monitoring	104	
Risk assessment-based review of the engineering design of the TSF and associated water management pond	200	
TSF failure analysis model for downstream impacts	80	
Predictive modelling of the TSF seepage	200	
Geotechnical Studies prior to Plant construction (allowed under Bulk Earthworks and TSF)	0	
Ground Water Characterisation and Monitoring during Construction	0	200
Waste Management Plan	100	100
Air Quality Plan	125	125
Noise and Vibration Monitoring Plan	100	100
Camp Water Quality/ Treatment Options Studies	15	
Contingency for cost escalation 5%	50	
Total	1,051	525

Table 11.18 Environmental Management Costs

11.9.4 Contingency

	J. J	•		
	Initial Capital	Contingency		
Description	(US\$,000)	%	(US\$,000)	
Owners Cost and Training	9,779	0%	0	
Addis Office Costs	4,640	0%	0	
Bulk Earthworks	14,582	Included above	Included above	
Grid Power Line	10,527	10%	1,053	
Access Roads and Airstrip	5,144	10%	514	
Mining Capital Expenditure	15,822	10%	1,582	
Environmental Management	1,051	10%	105	
Plant and Related Infrastructure		Included in DDA ¹		
Relocation and Resettlement		Included in DDA ¹		
Total Cost	54,186		3,255	

Contingency Allocation

Note 1: DDA - Design Development Allowance

Table 11.19

11.9.5 Closure Cost Estimate

The closure cost considers the cost of ongoing rehabilitation during the mining operations as well as the cost of closing the TSF and rehabilitation of the site.

The closure plan has been broken into four cost elements, TSF closure, waste dump, general site clean-up and a provision for equipment and suppliers to assist in the overall closure. The total provision is \$9.483 million.

Description	Closure Costs (US\$,000)
TSF Closure	6,510
Mine Waste Dump Closure	1,320
Site Clean Up	1,210
Equipment	443
Total	9,483

Table 11.20Closure Costs

12.0 PLANT AND ADMINISTRATION OPERATING COSTS

12.1 Introduction

The process and administration operating costs have been compiled by Lycopodium based on costs developed by:

- KEFI General and administration costs, labour costs.
- Lycopodium Processing costs.

The estimate is considered to have an accuracy of $\pm 15\%$, is presented in United States dollars (US\$) and is based on information from various sources with key inputs having been updated during the first quarter of 2017 (1Q17).

12.2 LOM Operating Cost Summary

Life of mine (LOM) operating costs for the project have been calculated by applying the unit costs per ore type to the LOM ore tonnages processed in the mining schedule.

The Tulu Kapi Gold LOM operating cost estimate is summarised in Table 12.1. Operating costs are exclusive of taxes, selling and royalty's costs.

Cost Centre	Total L	OM Cost
LOM Plant Feed 45.3 Mt	US\$M	US\$/t Plant Feed
Mining	441	28.64
Processing	133	8.67
General and Administration	88	5.69
Total	662	43.00

Table 12.1 LOM Operating Cost Estimate Summary (US\$, 1Q17, ±15%)

12.3 General Overheads – KEFI Scope

The general and administration overheads costs have been estimated by KEFI based on 2015 DFS costs and include the following ongoing operating expenses:

Administration labour costs including site management, human relations, community relations, environmental support and occupational health and safety personnel, commercial, accounting, purchasing and payroll services, computing services, site warehouse operations and site medical personnel. The manpower has been revised for this addendum to include an experienced Expat 1 Level Operations Manager and a more experienced Expat 1 Level Health, Safety and Security Manager.

- Site office expenses including communications and communication maintenance, postage and light freight, office equipment and supplies, computer supplies and software licenses.
- Offsite office (Addis Ababa) running costs.
- A contract will be let for provision of camp food and catering costs, cleaning and maintenance of the camp and site administration buildings.
- All non-mining light vehicle operating and maintenance costs.
- Access and bypass road maintenance costs.
- Site security contract.
- Insurance expenses covering industrial special risks, third party liability, motor vehicle, bullion transport and other requirements.
- Financial expenses including banking charges, legal fees, auditing costs and accounting consultants and bullion selling. Bullion refining and royalties are considered separately.
- Personnel expenses such as first aid and medical costs, safety supplies, travel and accommodation, recruiting / relocation costs, training, recreational and local facilities costs, professional memberships and subscriptions and entertainment allowances.
- Costs such as personnel transport, protective and safety equipment, OH&S supplies, and training.
- Environmental compliance testing and water management costs. Allowances for environmental testing and monitoring were increased considerably as part of the addendum.
- Provision for ongoing closure and site rehabilitation costs.
- Community relations expenses including development fund, general expenses, community projects and scholarships.

An annual allowance of \$1.2 million is made for corporate management fees. This is included in the general overhead. The average LOM general overheads cost is included in the overall operating cost estimate in Table 12.1.

12.4 Processing Operating Cost Summary

The information within this section has been compiled by Lycopodium utilising rates for labour, commodities and the like provided by KEFI.

The Tulu Kapi project will mine a range of ores from near surface saprolite (oxide) through shallow fresh low competency rock to deep hard fresh rock. The boundary for the deep ore was previously nominated as 1,600 mRL, but this was not a valid representation of the orebody characteristics. OMC adopted a geo-metallurgical approach to characterising the orebody with testwork characteristics being assigned to locations in the block model. The characteristic names have been retained, but the physical ore properties are now aligned more directly with the ore characterisation testwork.

An oxide throughput of 1.7 Mtpa with a target grind P_{80} of 125 μ m has been nominated while the mill design has been based on 1.5 Mtpa of blended fresh ore feed with a target grind P_{80} of 150 μ m.

The process plant availability has been nominated as 91.3% for milling and downstream operations and 80% for the crushing plant including scheduled and unscheduled maintenance. Provision for significant surge capacity ahead of the mill has been made to ensure the lower crusher availability does not affect downstream operation.

Process plant operating costs for the Tulu Kapi Gold Project were compiled from information sourced by Lycopodium and advised by KEFI:

- Grid power supply costs as advised by KEFI.
- Manning levels and pay rates advised by KEFI to suit the proposed process plant unit operations and plant throughput.
- Consumable prices sourced from supplier budget quotations and the Lycopodium database with KEFI advice of transport costs from Djibouti port to site.
- Reagent and consumption and metal recoveries based on laboratory testwork results, mill modelling and mining schedule.
- Modelling by Orway Mineral Consultants (OMC) for crushing and grinding energy and comminution circuit consumables, based on ore characteristics derived from relevant testwork.
- A contract laboratory operating cost quotation sourced by KEFI. Analysis costs cover all grade control sampling, process plant samples and environmental testing. Sample numbers and schedules were advised by KEFI.
- General and Administration costs as advised by KEFI.
- First principle estimates where required based on typical operating experience or standard industrial practice.

• Cost benchmarking with other similarly remote African projects and operations.

Operating cost detail has been sourced in US dollars, Australian dollars and South African Rand. The following exchange rates have been used for the preparation of the operating cost estimate:

- US\$1.00 = A\$1.32 (AUD).
- US\$1.00 = R14.39 (ZAR).
- US\$1.00 = ETB22.75 (Birr).

The fixed and variable components of the operating costs have been estimated by assessing the extent to which each item in each of the cost centres is a fixed or variable cost. For example, plant power draw and most of the operating consumables are variable costs with direct dependence on throughput rate, while the labour cost can be considered fixed.

The fixed / variable presentation allows assessment of processing costs in years when mined ore tonnages vary from the nominated design values.

Battery Limits

The operating costs presented include all direct processing and administration costs to allow production of gold bullion. The battery limits for the processing operating costs are as follows:

- Ore delivered to the ROM bin. Costs for the ROM pad FEL to load material to the process plant ROM bin are included in the mining costs. Crushed ore reclaim from the dead stockpile to the plant feed surge bin is also in the mining costs. Dead stockpile management is also a mining cost.
- Tailings discharge from the tails pipeline to the tailings storage facility (TSF).
- Gold bullion in plant goldroom safe.
- All required reagents and consumables being available from the plant stores.
- Sufficient clean water supply (rainfall run-off) to the water dam.
- Reliable grid power supply a 132 kV to the HV transformer secondary terminals.

Qualifications

The operating cost estimate presented in this section is exclusive of the following:

- All costs associated with areas beyond the battery limits of Lycopodium's scope of work.
- Any impact of foreign exchange rate fluctuations.
- Any escalation from the date of the estimate.

- Any contingency allowance.
- All withholding taxes and other taxes. KEFI advises that the project will be exempt from all Ethiopian taxes and duties.
- Gold refining and bullion transport and in-transit security of gold from site.
- Tailings storage facility future lifts, site rehabilitation and closure costs (accounted for separately in owner's capital costs).

TULU KAPI GOLD PROJECT STUDY UPDATE
 Table 12.2
 Processing Operating Cost Estimate Summary (US\$, 1Q17, ±15%)

Cost Centre	Oxide		Ave Fres	4	Shallow Fre	sh	Deep Fres	ч
	US\$/y	US\$/t	US\$/y	US\$/t	US\$/y	US\$/t	US\$/y	US\$/t
Power	796,997	0.47	1,001,543	0.67	875,576	0.58	1,106,515	0.74
Operating Consumables	10,051,583	5.91	8,406,576	5.60	7,808,913	5.21	8,936,455	5.96
Maintenance	1,589,119	0.93	1,630,723	1.09	1,609,601	1.07	1,648,324	1.10
Process & Maintenance Labour	2,285,946	1.34	2,285,946	1.52	2,285,946	1.52	2,285,946	1.52
Total Processing	14,723,645	8.66	13,324,787	8.88	12,580,037	8.39	13,977,239	9.32
Administration Labour	2,846,468	1.67	2,846,468	1.90	2,846,468	1.90	2,846,468	1.90
General and Administration Costs	4,610,894	2.71	4,610,894	3.07	4,610,894	3.07	4,610,894	3.07
Laboratory	1,140,326	0.67	1,140,326	0.76	1,140,326	0.76	1,140,326	0.76
Total G&A	8,597,688	5.06	8,597,688	5.73	8,597,688	5.73	8,597,688	5.73
Total	23,321,333	13.72	21,922,475	14.61	21,177,725	14.12	22,574,928	15.05

Exclusions: All Mining Costs

12.4.2 Power

The power cost estimate has been based on grid power at a unit cost of US\$0.02/ kWh as advised by KEFI based on the published Ethiopian Electric Power Corporation tariff. The average continuous power draw and power cost for the LOM blend by plant area is summarised in Table 12.3.

An estimate of the power cost for the Mine Services Area (MSA) is included in the processing operating cost. The power cost for the accommodation camp and other remote site facilities is also included in the operating cost.

	Average	Continuous [Draw (kW)	Tota	l Power Cost ((US\$)
Area	Oxide	Shallow Fresh	Deep Fresh	Oxide	Shallow Fresh	Deep Fresh
Primary Crushing	157	157	157	27,475	27,475	27,475
Reclaim	64	64	64	11,274	11,274	11,274
Grinding Energy	1,863	2,311	3,629	326,314	404,893	635,831
Milling, Classification (excl grinding energy)	269	269	269	47,129	47,129	47,129
CIL	402	402	402	70,471	70,471	70,471
Elution and Goldroom	60	60	60	10,497	10,497	10,497
Cyanide Destruction and Tails Disposal	167	167	167	29,309	29,309	29,309
Reagents and Fuel	10	10	10	1,678	1,678	1,678
Water Systems	233	233	233	40,735	40,735	40,735
Air Systems	249	249	249	43,636	43,636	43,636
Plant Buildings and Workshops	326	326	326	57,115	57,115	57,115
Decant Return	99	99	99	17,300	17,300	17,300
Processing Total	3,898	4,347	5,665	682,934	761,513	992,452
Processing Total Cost, US\$/t				0.40	0.51	0.66
Processing Fixed Cost, US\$/y				297,875	297,875	297,875
Processing Variable Cost, US\$/t		•		0.23	0.31	0.46
Plant Services	16	16	16	2,725	2,725	2,725
Tailings Facility	1	1	1	155	155	155
Raw Water Supply	99	99	99	17,300	17,300	17,300
Mine Services Area	128	128	128	22,507	22,507	22,507
Camp and Offices	407	407	407	71,375	71,375	71,375
Infrastructure Total	651	651	651	114,063	114,063	114,063
Infrastructure Total Cost, US\$/t				0.07	0.08	0.08
Infrastructure Fixed Cost, US\$/y				114,063	114,063	114,063
Infrastructure Variable Cost, US\$/t				0.00	0.00	0.00
Processing and Infrastructure Total Processing and Infrastructure Total Cost,	4,549	4,998	6,316	796,997	875,576	1,106,515
US\$/I Processing and Infrastructure Fixed Cost				0.47	0.58	0.74
US\$/y Processing and Infrastructure Variable				411,938	411,938	411,938
Cost, US\$/ť				0.23	0.31	0.46

Table 12.3	Processing	Power	Cost	Summary	(US\$.	1017.	$\pm 15\%$)
	rioccoomy	1 0 1 0 1	0031	Gammary	(ΟΟψ,	- rocir,	±10/0/

The power consumption for the SAG mill has been modelled by OMC based on a geo-metallurgical application of the mineralised materials properties to the resource. The power consumption for the remainder of the plant has been estimated from typical load factors and running hours for the installed drives selected for the process plant mechanical equipment.

The 2015 DFS power draws were correctly estimated at approximately 3.5 MW for the plant and services and 2.8 MW for grinding, but the power costs were incorrectly calculated and are approximately \$0.20/ t too low. The lower milling power in the addendum costs is expected with the coarser grind size selected. Diesel fired rather than electric heating is proposed for the elution and regeneration circuits further reducing the average power drawn.

12.4.3 Operating Consumables

Costs for processing operating consumables, including reagents, crusher and mill liners, fuels and process supplies have been estimated and are summarised by ore type in Table 12.4. Consumable costs are considered 100% variable. Consumables consumption and cost detail for the three mineralised material types is included in Appendix 12.1.

Plant Area	Oxide)	Shallow Fresh		Deep Fresh	
Flailt Alea	US\$	US\$/t	US\$	US\$/t	US\$	US\$/t
Crusher Liners	203,736	0.12	359,134	0.24	215,725	0.14
Mill Liners and Consumables	606,710	0.36	826,503	0.55	1,242,022	0.83
Grinding Media	582,583	0.34	1,296,882	0.86	2,152,314	1.43
Quick Lime	1,998,293	1.18	218,880	0.15	218,880	0.15
Cyanide - CIL	1,989,671	1.17	1,298,176	0.87	1,298,176	0.87
Activated Carbon	211,172	0.12	207,125	0.14	207,125	0.14
Elution and Refining	853,610	0.50	787,465	0.52	787,465	0.52
CN Detox	3,572,807	2.10	2,781,597	1.85	2,781,597	1.85
Water Treatment, Other	33,001	0.02	33,151	0.02	33,151	0.02
Total Cost	10,051,583	5.91	7,808,913	5.21	8,936,455	5.96

Table 12.4 Processing Operating Consumables Cost Summary (US\$, 1Q17, ±15%)

The consumption of reagents and other consumables has been calculated from laboratory testwork and comminution circuit modelling or has been assumed based on experience with other operations. No additional allowance for process upset conditions and wastage of reagents has been made.

Reagent costs CFR Djibouti port has been sourced from budget quotations and in-house data relating to similar projects in the region. Transport costs to site have been added per KEFI advice.

Cyanide destruction cost has been based on the Inco Air / SO_2 method, with the treatment of CIL tailings containing 110 g CN_{WAD} / m³ to ensure a maximum discharge concentration of 50 g CN_{WAD} / m³ after cyanide destruction.

A diesel price, delivered to site, of US\$0.62 per litre has been used for process heating requirements. Diesel usage for carbon treatment and the gold room has been calculated from first principles.

Allowances have been made for mill lubricants, water treatment reagents and operator supplies.

Overall unit costs estimated are similar to those for the 2015 DFS; however this results, because the grinding consumables usage is lower with the lower specific energy required to achieve the coarser grind size. Quoted supply costs for reagents, most notably cyanide and detox reagents, are higher and allowances have been made for the necessary cyanide solution residual loss and the destruction of the total cyanide residual thereby increasing these costs significantly (these appear to have been omitted previously).

12.4.4 Maintenance Materials Costs

The plant maintenance cost allowance has been factored from the capital supply cost using factors from the Lycopodium database.

The allowance covers mechanical spares and wear parts, but excludes crushing and grinding wear components, grinding media and process consumables which are allowed for in the operating consumables cost.

The maintenance cost excludes payroll maintenance labour which is included in the labour cost. Contract labour has been allowed to assist with mill liner changes and plant shutdowns.

Allowances for plant building maintenance and general infrastructure maintenance expenses have been made.

General maintenance expenses include specialist maintenance software licences, maintenance manuals and ongoing control system service fees.

This maintenance estimate covers additional areas that were neglected in the 2015 DFS such as contract labour and general maintenance management costs, but with similar factors for cost of supplies and spares, the costs should be more equivalent. The 2015 DFS estimate appears to underestimate costs as well as omit maintenance to areas such as platework which requires relining and repair and aspects such as control system maintenance and updates and general plant condition maintenance such as painting.

12.4.5 Labour

The labour rates, manning levels and rosters used to determine the labour operating cost estimate were advised by KEFI based on the 2015 DFS. Benchmarking with Tanzanian projects and other similar operations indicates that labour costs allowed are appropriate.

The labour costs and manning numbers for plant operations and maintenance are summarised in Table 12.5.

	Staff Personnel	Annual Cost US\$/year	International Expatriate	Regional Expatriate	Regional Ethiopian	Local Ethiopian	Contract	Total
Administration	89	2,846,468	3	6	47	33	138	227
Plant Operations	63	1,294,133	0	12	21	30	37	100
Plant Maintenance	58	991,813	0	6	36	16	0	58
Total	210	5,132,414	3	24	104	79	175	385
Total Cost US\$/t		3 02						

Table 12.5Process Plant Personnel and Annual Cost (US\$, 1Q17, ±15%)

* Contract manning includes catering, cleaning, security and laboratory services.

The overall labour numbers have changed little since the 2015 DFS, but there is an increased number of expatriate positions with a view to elevating national staff to these roles once operations have been stabilised and the incumbents demonstrate job proficiency.

The processing labour cost includes all labour costs associated with plant operations and maintenance personnel. Administration labour includes the site based management team as well as finance, HR, HSE, logistics and purchasing personnel. The tabulated labour cost excludes all mining personnel and mining contractors (included in the Mining costs) and any head office based administration personnel (included in the general overheads costs).

Labour costs will decrease marginally after Year 3 as it is intended that national employees should fill more senior roles once they become proficient in their area.

Contracts will be let for site security, camp cleaning and catering and operation of the site laboratory. Contract management and senior personnel will be housed in the camp with labour being sourced locally.

The estimate of the labour contingent has been based on a four shift operation (three shifts working 8 hours per day, one rotation shift), to provide continuous coverage for the plant operation with additional personnel allowed for leave and absenteeism coverage.

Unit rates for labour have been provided by KEFI and include the base salary and an overheads allowance. The overhead cost includes allowances for expatriate and national travel, medical health insurance, life and disability cover, leave provisions and annual bonuses. Camp and transportation costs for the workforce are excluded from the labour cost as they are included in the G&A cost estimated by KEFI.

12.4.6 Laboratory Costs

A contract laboratory will provide sample preparation and assay services for plant and environmental samples and one hundred mine grade control samples per day.

Laboratory costs have been based on a detailed quotation based on proposed sample numbers from grade control, plant and environmental. The laboratory cost includes for the supply of the laboratory equipment, mobilisation and all ongoing costs (laboratory labour, equipment and consumables) comprising a minimum monthly spend and a variable cost related to the sample assay costs. The laboratory building is included in the contractor mobilisation.

12.4.7 Services and Utilities

Water Supply

The raw water supply will be from rainfall runoff collected in dams required to minimise inflows to the tailings impoundment. Costs are based on operation and maintenance of the water supply pumps and pipeline.

Water supply costs have not been estimated separately as they have been included in the other cost centres:

- Water supply pumping power is included in the power cost.
- Maintenance costs associated with water supply are included in the maintenance cost.
- No dedicated operations labour is required for the water supply.

The consumables cost estimate includes allowances for the treatment of elution water and potable water and for the addition of anti-scalant to both the decant return and the elution water.

12.4.8 Processing Preproduction and Working Capital Costs

The pre-production costs incurred by operations during the latter stages of construction and commissioning are included in the capital cost estimate. The pre-production cost estimate is based on treating 100% oxide for the initial six weeks of operation.

Pre-Production Labour

Pre-production labour costs reflect the need to recruit key operating personnel in time for them to set up and establish operating procedures and undergo training as required. It is envisaged that manning build-up will commence eight months ahead of plant start-up.

First Fill Reagents and Opening Stocks

Costs have been allowed to purchase the consumables and reagents required for the first fill and opening stocks. The first fill and opening stock estimates are provided in Appendix 12.1.

Sufficient first fill reagents and consumables were estimated to fill the reagent tanks, charge the mills with media, add the carbon inventory to the CIL circuit and meet the other plant consumable requirements. Opening stocks refer to the purchase of the reagents and consumables required to sustain the operations for six weeks, which is the minimum on-site start-up storage quantity nominated by KEFI to avoid disruption of supply.

Quantities allowed have been based on either consumption over the minimum period or minimum shipping quantities, considering package size.

Vendor Representatives

These costs allow for specialist vendor representatives to oversee commissioning of their equipment and include allowances for labour, airfares and expenses.

Training

The training allowance covers the cost of providing pre-production training for operations and maintenance staff, but not their salaries as these are covered in the pre-production labour costs. Further allowances are made in the G&A costs for ongoing operator training and staff development.

Working Capital

Working capital covers the cost of operating the plant before the first revenue is received from bullion sales.

The basis of the process working capital calculation is six weeks of plant operations based on treating 100% oxide material at 80% of the design throughput rate. This period allows for initial ramp up to bullion production, shipping to the refiner and typical payment terms.

13.0 PROJECT IMPLEMENTATION SCHEDULE

13.1 Basis

The Tulu Kapi project is an infrastructure intensive project and as such the associated activities form the basis of the critical path as shown in the schedule contained in Appendix 13.1.

The schedule provides for early works commencing in April 2017 with the upgrade of the construction camp and the preparation, tender, negotiation and award of the environmental study, geotechnical assessment, hydrology assessment so that the reports can be provided by November 2017 as a driving predecessor to the design activities.

A key risk that was identified during the design of the Water Dams is the risk of availability of water required for start-up should there be a 1 in 100 year rain wet season. As a mitigation measure the construction has been sequenced so as to allow two wet seasons for the collection and storage of water. The design of the Water Dams is scheduled to commence in Q3 2017 with construction starting Q4 2017 enabling completion of the dam before the start of the first wet season in May 2018.

An opportunity exists in the next phase of the project and once further geotechnical investigation has occurred, to rationalise bulk earthworks in terms of maximising the cut to fill ratio and the use of imported fill, and maximising the execution approach.

The remainder of the project, and in particular the process plant, has been scheduled with a typical approach for this type of processing facility, with the engineering commencing in Q4 2017 and commissioning in November 2019.

The overall project duration is approximately 30 months being a 6 months early works programme and 24 months duration for the main portion of the EPC.

The Preliminary Baseline Schedule attached in Appendix 13.2.

PROCESS DESIGN CRITERIA

1953\17.04\1953-000-GEREP-0001_C

TULU KAPI GOLD PROJECT

STUDY UPDATE

KEFI MINERALS ETHIOPIA PLC TULU KAPI GOLD PROJECT

PROCESS DESIGN CRITERIA AND MASS BALANCE AND PLANT WATER BALANCE

Lycopodium

1953-000-PRPDC-0001

August 2016

В	23.08.2016	ISSUED FOR FEED	75	the	ica
A	08.07.16	ISSUED FOR INTERNAL / CLIENT REVIEW	pp DG	DG	pp DG
REV	DATE	DESCRIPTION OF REVISION	BY	DESIGN APPROVAL	PROJECT

Lycopodium Minerals Pty Ltd, ABN: 34 055 880 209, Level 5, 1 Adelaide Terrace, East Perth, Western Australia 6004

Client	KEFI Minerals Ethiopia PLC Date	23-Aug-16	Revision	B	
Project	Tulu Kapi Gold Project		Prepared	DG	
Document	PROCESS DESIGN CRITERIA Job Number	1953	Checked	LS	
	Units		Rev	Source	Ref

KE	-1	KEFI Minerals Ethiopia Reference Documents / Advice
Agr	eed	Agreement of Meeting Between Owner and Lycopodium
Tes	4	Metallurgical Testwork
Cor	IS OMC	Orway Minerals Consultants
Lyo	0	Lycopodium Experience
Ind	ustry	Generally Accepted Practice
Cal	c	Calculated From Given Data
Ver	dor	Vendor Recommendations or Standard Specifications
Ass	ume	Assumption Requiring Verification

Disclaimer;

Data stated in the Process Design Criteria and Process Mass Balance is used for design purposes only and is not a statement of predicted plant performance. Whilst it is intended that the plant shall be operated at conditions detailed in the Design Criteria and Mass Balance, no contractual commitment to this effect is implied or intended.

Note: The SI system of units is used throughout the Process Design Criteria

Note: Gas flow rates in Nm¹/h are based on a molar volume of 22,415 m¹/kg mol (at 273,15K and 101,325 kPaA).

1.0 SITE CHARACTERIST	CS								
Location						Ethiopia	A	KEFI	1
				See :	site datasheet 1953	-000-GEDAS-0001	A	Lyco	1
2.0 ORE AND WATER CHA	ARACTERISTICS								
Ore				Oxide 5	hallow Fresh	Deep Fresh			
	Ore Source				of the second second second	Open Pit	A	KEFI	1
	Plant Throughput ROM		dry t/a	1,700,000	1,500,000	1,500,000	A	Agreed	
	Crushing Circuit Design Throughput	Design	dry t/a	1,700,000	1,500,000	1,500,000	A	Agreed	
	Ore grade - design	Au	fig	2.66	3.05	3.05	в	KEFI	13
		Ag	FQ.	1.40	1.40	1.40	в	KEFI	13
	Moisture - design		%	5.0	5.0	5.0	в	KEFI	
	Bulk density		1/m ³			1.6	в	KEFI	1
	Dry SG	Design		2.70	2.68	2.73	в	KEFI	3
	Angle of Repose	Design		35	35	35	A	Industry	
	Angle of Withdrawal	Design	+	60	60	60	A	Industry	
	Angle of Surcharge	Design		20	20	20	A	Industry	
	Overall Gold Extraction	Design	5	97	96	96	в	KEFI	1
	Overall Silver Extraction	Design	56	96	84	84	B	KEFI	1

Design Comminution Parameters

			Oxide	Shallow Fresh	Deep Fresh	Design Blend			
Proportion of LOM			6.2%	65.5%	28.4%		A	KEFI	9
Design Blend				To be based o	n limiting value for	oxide or fresh ore	A	Agreed	
Crusher work index	Range	kWhit	8.2	11.4	12.9		в	KEFI	
	Design	kWh/t	8.2	11.4	12.9		Ð	KEFI	3
Unconfined compressive strength	Range	MPa.					в	KEFI	
Abrasion index	Design		0.3140	0.390	0.652	0.384	B	KEFI	3
Aub	Range						в	KEFI	
	Design		112	82.0	39.0	45.7	в	KEFI	3
SG	Range		2.71	2.84	2.84		в	KEFI	
Bond rod mill work index	Range	kWh/t					B	KEFI	
	Design	kWhit	11.3	12.2	19.7		B	KEFI	3
Bond ball mill work index	Range	kWhit.					в	KEFI	
	Design	kWh/t	15.5	15.5	18.0	15.5	в	KEFI	3
Speciifc Energy	Design	kWh/t				17.7	в	Lyco	15
	Turn Down	kWhit				13.0	R	Lyco	15

Apparent Viscosity

Shear Rate	Stur	ry Viscosity (cp	s) Oxide natura	al pH
(sec')	40% w/w	50% w/w	60% w/w	70% w/w
4.2	0	0	599	3780
7.4	0	0	425	3314
13.1	0	0	300	2508
21.9	0	0	201	1981
38.9	0	44	129	1422
67.4	23	40	107	1010
119.2	33	49	108	771
209.5	54	68	122	554

Shear Rate	Slu	rry Viscosity (c	ps) Oxide pH -	10.5
(sec")	40% w/w	50% w/w	60% w/w	70% w/w
4.2	0	0	449	4229
7.4	0	0	319	3888
13.1	0	0	216	2976
21.9	0	0	144	2441
38.9	0	36	186	1435
67.4	21	40	110	898
119.2	32	51	108	686
209.5	50	70	117	574

1953-000-PRPDC-0001_B Design Grit 23/08/2016 KEFI

5

в

-				
			100	-
	-			m
	5	\sim		
_	~	~~	-	

Client	KEFI Minerals Ethiopia PLC	Date	23-Aug-16	Revision	В	
Project	Tulu Kapi Gold Project			Prepared	DG	-
Document	PROCESS DESIGN CRITERIA	Job Number	1953	Checked	LS	
		Units		Rev	Source	Ret

KEFI в 5

> Test 5,2

٨

Shear Rate	Slun	ry Viscosity (cp	s) FRESH natur	al pH
(sec')	40% w/w	50% w/w	60% w/w	70% w/w
4.2	0	0	0	1797
7.4	0	0	0	1423
13.1	0	0	0	1044
21.9	0	0	0	761
38.9	0	0	57	582
67.4	16	26	68	436
119.2	29	40	83	369
209.5	48	56	113	382
Shear Rate	Slu	rry Viscosity (c;	s) FRESH pH -	10.5
(sec-1)	40% w/w	50% w/w	60% w/w	70% w/v
4.2	0	0	0	3107

	(sec ⁻¹)	40% w/w	50% w/w	60% w/w	70% w/w
1	4.2	0	0	0	3107
	7.4	0	0	0	2847
	13.1	0	0	132	2304
	21.9	0	0	100	1464
	38.9	0	0	73	1095
	67.4	19	28	84	742
	119.2	32	47	88	684
	209.5	52	70	115	480

209.5 52 70 Shear stress values < 30 Pa for slurry solids up to 60 % w/w for both oxide and fresh ore.

CIL Circuit D	lesign Parameters	121111	Oxide	Eresh	Design			
	Fleming Kinetic Constants, Au	Carbon						
	ĸ	b.,	150	150	150	B	KEFI	
	n		0.60	0.60	0.60	B	KEFI	
Water	Туре				Raw Water	в	KEFI	14
	pH				7.3	E	KEFI	14
	Specific Gravity				1.00	в	KEFI	14
	Temperature	°C			24.6	в	KEFI	
	Turbidity	NTU			121.0	B	KEFI	
	Electric conductivity	u.s/cm			97.8	B	KEFI	
	Total dissolved solids (TDS)	ppm			48.9	в	KEFI	
	Suspended solids	ngñ			98.0	B	KEFI	
	Total Amonia, NH3 as N	ng/l			0.1	8	KEFI	
	Phosphate, PO4 ⁻³ , reactive	ngit			0.22	B	KEFI	
	Sulphide	mg/l			0.09	B	KEFI	
	Chloride	mg/l			33.0	B	KEFI	
	Fluoride	mg/l			0.79	в	KEFI	
	Nitrate	mg/l			13.8	B	KEFI	
	Nitrite as N	mg/l			0.02	в	KEFI	
	Hydroxide alkalinity (OH')	mg/t			0.0	в	KEFI	
	Carbonate	ngil			0.0	B	KEFI	
	Bicarbonate	ngā			97.0	в	KEFI	
	Total alkalinity	mg/l			97.0	в	KEFI	
	Silica	mgd			35.9	B	KEFI	
	Sulphate	mg/l			12.0	B	KEFI	
	Total Nitrogen	mg/l			0.0	в	KEFI	
	Total phosphorus as P	ngit			15.5	в	KEFI	
	COD	mg/l			39,0	в	KEFI	
	Phosphate, PO4-3, poly	mgit			47.5	B	KEFI	
	Phenol	mg/l			80.0	B	KEFI	
	8005	mgil			26.0	в	KEFI	
	Calcium	mp/l			17.03	в	KEFI	
	Iron (Fe)	mgil			2.52	в	KEFI	
	Potassium	mg/l			2.11	в	KEFI	
	Managanese	ingil			0.62	в	KEFI	
	Sodium	Jom			13.52	в	KEFI	
	Zinc	nga			0.10	в	KEFI	
	Alumnium	nou			1,727.5	в	KEFI	
	Silver	hðu			1.02	в	KEFI	
	Beryflium	hail			0.65	в	KEFI	
	Cadimium	nau			0.13	в	KEFI	
	Cobalt	hav			3.86	в	KEFI	
	Chromium	hBu			60.75	в	KEFI	
	Magnesium	mgit			5.71	в	KEFI	
	Copper	neu			3.87	в	KEFI	
	Nickel	h6H			21.21	в	KEFI	
	Lead	484 1			1,730	в	KEFI	
	Mercury	rau rau			1.93	в	KEFI	
	Arsenic	ngu			1.70	в	KEFI	
	Gold	PB4			2.85	в	KEFI	
	Lithium	ngq			2.65	в	KEFI	
	Titanium	ngu			47.03	в	KEFI	
	Stronbum	ngu			63.1	в	KEFI	
	rotal collorm	CFU/100mt			9,000	в	KEFI	
	Paecal coliform	CFU/100ml			1.658	B	KEF1	

Client	KEFI Minerals Ethiopia PLC	rals Ethiopia PLC					ision	В	
Project	Tulu Kapi Gold Project					Prep	Prepared		
Document	PROCESS DESIGN CRITERIA		11000	Job Number	1953	Che	sked	LS	
25112-21			Units	the Activity		1.4.4.4	Rev	Source	Ref
3.0 OPE	RATING SCHEDULE								
	Scheduled working days		d/a			365	A	KEFI	1
CRU	SHING PLANT OPERATION								
	Operating hours per day		h			24	A	KEFI	1
	Operating days per year		d			365	A	KEFI	1
	Operating hours per year		h			7,008	A	Lyco	
	Availability		%			80.0		Calc	
	Feed rate	Operating	dry th	243	214	243		Calc	
		Design	dry t/h	243	214	243		Calc	
		Design	wet t/h	255	225	255		Calc	
MILL	ING PLANT OPERATION								
	Operating hours per day		h			24	A	KEFI	1
	Operating days per year		d			365	A	KEFI	1
	Operating hours per year		h			8,000	A	Lyco	
	Availability		%			91.3		Calc	4
	Feed rate	Operating	dry t/h	213	188	213		Calc	
		Operating	wet th	224	197	224		Calc	

4.0 CRUSHING AND RECLAIM

Run of Mine (ROM) ore will be trucked from the pit to the ROM pad and dumped either on the ROM pad to be reclaimed by FEL and loaded to the ROM Bin or direct tip via a Cat 777.
The ore will be crushed by a primary jaw crusher and conveyed to a surge bin.

Crushing Circuit				Oxide	Eresh	Design Igle Stage Crushing	B	KEFI	
Truck	Tune					C-1 777		MEET	
THUCK	Connoli		2			Gat ///	2	Vandar	
T and a start	Capacity		1		1.0	92	-	vendor	
Loader	Type		12			at 966 or equivalent	8	REFI	
	Capacity						в	vendor	
Ore	ROM Top Size	Fill	entains			800	A	KEFI	12
	ROM PSD (Assumed for Modelling)	F100	mm	800	800	800	в	KEFI	
		Fea	111/115			444	A	KEFI	
		F 55	mm			170	A	KEFI	
		F ₃₈	mm			32	в	KEFI	
ROM Bin Feed					Direc	t Tip or Loader Feed	в	KEFI	
Grizzly	Type				Rem	ovable Static Grizzly		Lypp	
	Plant Top Size Limit		mm	700	700		B	Lyco	
	Aperture		mm		1.484.1	700 x 700	A	Lyco	
DOM BIN	Readed Malazin Conside	Teste	No.						
ROM Bin	required winimum Capacity	Trucks				1.3	A	Cyco	
	Colusted Connells		m3			00		Calc	
	Selected Capacity		in .			1.00	^	Cale	
			mins	47	54	1952	^	Calc	
Primary Feeder	10								
	Туре					Apron Feeder	A	Lyco	
	Throughput	Operating	dry th	243	214	243		Calc	
		Operating	wat t/h	255	225	255		Calc	
ROM Grizzly									
	Туре					Vibrating Grizzly	в	Lyco	
	Required Capacity	Operating	dry t/h	243	214	243		Calo	
	Recommended Size		mm			1,400 x 4,800	в	Lyco	
		Aperture	mm			75 mm slot	A	Lyco	
	Selected Capacity	Operating	dry t/h	243	214			Calc	
	Selected Size		mm			1,400 x 4,800	A	Lyco	
		Model				LH 48/14	A	Lyco	
		Aperture	mm			75 mm slot	А	Lyco	
	Oversize		16	100	100		A	Lyco	
		Operating	dry t/h	243	214	243		Calc	
Primary Crusher				Oxide	Fresh	Design			
	Туре					Jaw	в	KEFI	
	Recommended Size		mum)		Metso	C120 or equivalent	в	KEFI	
			mm			1,200 x 870	A	Vendor	
	Selected Size		mm.			Metso C120	A	Vendor	
			mm			1,200 x 870	A	Vendor	
	Feed rate	Operating	dry t/h	243	214			Calc	
	Crusher CSS		mm			121	в	KEFI	1
	Crusher product size	PM	mm			210	в	KEFI	2
		Pe	mm			122	в	Vendor	
Overall Crushing (Circuit Product								
554953036355555555	Ore Type			Oxide Sh	allow Fresh	Deep Fresh	A	KEFI	
	Crushing Circuit Total Product	P _M	mm	54	120	120	в	KEFI	
Primary Crusher D	lischaros Conveyor								
	Capacity	Operation	dry th	249	214	243		Cale	
	Contractor (M.C.	obergenit.	went tills	243	204	243		Cale	
	Maximum lumo size		mm	200	240	003		Cale	
	terrest of the second sec			210	210	210		to diffe	

Client	KEFI Minerals 8	Ethiopia PLC			Date	23-Aug-16	Rev	tsion	B	-
Project	Tulu Kapi Gold	Project					Prepi	ared	DG	
Document	PROCESS DES	IGN CRITERIA		100000	Job Number	1953	Chec	sked	LS	
				Units	Charles Andreas			Rev	Source	Re
	Surge Bin Feed	i Conveyor								
	51240. 7 2.579.899.8559	Capacity	Operating	dry th	243	214	243		Calc	
			S 5	wet th	255	225	255		Calc	
		Crushed Ore	P100	mm	210	210	210	в	KEFI	
			Pm	enes	54	120	120	в	KEFI	3
	Ore Storage		- D.						Riter in	1
	-	Type				Surge Bin with o	verflow to stockpile	A	Lyco	
				m*			50	A	Lyco	
		Capacity	Live	t			80		Calc	
	10 C	0.000	Based on mill feed	mins	23	26	9530		Calc	
	Stockpile Feed	Conveyor								
	CALING/CALING	Capacity	Operating	dry th	243	214	243		Cale	
		Crushed Ore	Pte	mm	210	210	210		Calc	
	Stockpile	Type					Dead Stocknile		Lyca	
		Capacity (under conveyor)	Nominal	dry t			500		Lyco	
			Mill feed	h	2.4	2.7			-1	
		Capcacity (total after dozing to sides)		h			24		KEFI	
			Fresh Ore	drv t.			4,500		Calc	
	Reclaim Feeder	r i i i i i i i i i i i i i i i i i i i								
		Туре					Apron Feeder	A	Lyco	
		Capacity	Operating	dry th	213	188	213	-	Calc	
			NEO SERVICE	wet th	224	197	224		Calc	
		Maximum lump size		mm	210	210	210		Calc	
	Mill Feed Conve	eyor								
		Capacity	Operating	dry tih	213	188	213		Calc	
				wet t/h	224	197	224		Calc	
		Maximum lump size	F100	mm	210	210	210		Calc	
			Fm	mm	54	120	120		Calc	
	Lime Silo									
		Storage method	Type				Silo	A	Lyco	
		Storage capacity	Capacity	dry t			5	A	Agreed	
			Nominat	h	12	103			Calc	
	Lime Fe	eder Lime Addition Rate	Nominal	dry kg/h	428	49	428		Calc	

5.0 GRINDING

A single stage milling circuit will be utilised. The mill will operate as a grate discharge single stage SAG mill with layout provision for a future pebble crushing circuit (SS SAC). A KEFI Crushed ore and water will be fed to the mill and will discharge via a trommel. Trommel oversize will pass to a scats bunker. Layout provision will be made for a future pebble crushing circuit returning crushed pebbles back onto the mill feed conveyor. The mill will operate in closed circuit with hydrocyclones, with cyclone underflow reporting to the mill feed. Cyclone **A Agreed** overflow will gravitate to the trash screen for grit and woodchip removal.

Milling Circuit				Oxide	Fresh	Design			
	Target Product Size	Pm	micron	150	150	150	A	KEFI	
Primary Mill	Time							WEEK	
	Discharge					Grate Discharge	0	KEEL	
	Size	Dismater	-			Grate Discharge		Luno	47
	Gian	EGI				6.70		Luco	14
		Diamater				22.0		Cale	14
		ECI				22.0		Cale	
		Installard	LAU .			20.3		Luno	
		Pinion Dowar - Nominal	EAU.			3,000	P	E uno	
		Pinion Maximum	1 AV			4 360		Luco	12
	Speed	Bance	W.Mer			4,000		Luco	
	open	Nango.	W.Mar.			00-00	2	Lyco	
	Mill Specific Energy	Design	LUVINA			17.7		Lyco	
	Rell Chates	Design	RAAL IN			34.4		Lyco	
	bai charge	6.4m January	76			11	8	Lyco	
	Total and	Patri	2			16		Lyco	
	Total Load	Duty	2			25	8	Lyco	11
	Bull size may	Maximum Oxide Ote	74			35	8	Lyco	11
	Mill diactheres % solids	Crobe Ore	nen.			80	B	Lyco	11
Babble Deventorie	weil discharge % solids		The WAY			15	B	LYCD	11
People Dewaterin	Tran					1.000.000	121	WEEK	
	Corpora Dock					Trommel	2	NEFT	
	Screen Deck					Rubber	2	Lyco	
	trommel spray water		ALL MY			20	в	Lyco	
Cyclone Feed Put	mps	Design	t solids/h	744	938	938		Calc	
99 5 010 (995400)		Linear and the	t water/h	436	484	484		Calc	
			t slurry/h	1,180	1,421	1,421		Calc	
			m³m	712	833	833		Calc	
			% w/w	63.0%	66.0%			Calc	
			silurry SG	1.66	1.71			Calc	
Classifying Cyclo	nes			Oxide	Fresh	Design			
	Target product size	Pao	micron	150	150	150		Caic	
	Circulating load, % of new mill feed	Design	%	250%	400%		A	Lyco	
	Classification % Solids	Feed	% within	63.0%	66.0%			Calc	
		Overflow	% w/w	46.0%	46.0%		A	Lyco	1
		Underflow	% w/w	74.0%	74.0%		A	Lyco	
	Operating pressure		kPag	67	65		A	Lyco	
	Size		mm	400	400	400	A	Lyco	
	Operating	Duty	No.	6	6	6	8	Lyco	
		Standby	No.	1	1	1		Calc	
		Total installed cyclones	No.	7	7	7	A	Lyco	
		Blanked Ports	No.	1	1	1	A	Lyco	
		Total ports on cluster	No.	8	8	8	A	lyco	
8 1000-0099				50 T (1)					

This descenter is the priperty of Language the Houses's PipLid. It must not be registed as represented in any rate or traveristic as in any fixed were utilized writes activate from Company and Alexandri PipLid.

Client	KEFI Minerals Ethic	opia PLC			Date	23-Aug-16	Rev	vision	в	
Project	Tulu Kapi Gold Pro	ject					Prep	ared	DG	
Document	PROCESS DESIGN	CRITERIA			Job Number	1953	Che	cked	LS	
	12			Units	C *** 1.00 ***	1.4.4		Rev	Source	Ref
6.0 GRAN	VITY CONCENTRAT	ION CIRCUIT	EVE EN MARK	88-1 - C-						
	Space will be provid	ed for a potential future gravity circuit, but a gra	willy circuit is not included	2 in the project	ct scope.			A	Lyco	
TA TRAS	U SCREENING									
F.V TRAS	The trach screen will	I he filled with reninceable wednessire namely h	need the ecologics duty	a saltalita tensistiet	in order one of blocker throughout roles				10000	
	Trach Screen wa	t be inted with replaceable wedgewire panels o	o meet the screening outy	A Multing steepol	ig oxide one at higher throughput rates			A	Lyco	
	Trash Screen	Time					A FIRE CONTINUES.	-	Lucia.	
		Cype Summer dark			Mandaman free and an and do and a		Vibrating	A	Lyco	
		Acather		1.0000	wedgewire panets on oxide ore a	nd polyuretnan	e panels on primary ore	^	Lyco	
		Aperture Errors Erect	Cham inclusion contac	mm 3da	0,63 m	1m x 12 mm (po	olyurethane), cross flow	^	Lyco	
		Trash discharge	county inco spray water	111 114	336	300	Bin to suit IT. 39 CAT		VECI	
		Sreen Snrav Water		m ³ /h			DID TO SUIL 11-20 CAT	1	ACP1	
		Screen Spray Walk		in in			10	A	raco	
SA PPE	EACH THICKENIN	6								
ale Philes	Preleach thickening	is not included. Cyclone overflow will be opera	ted at ~46% w/w solids a	nd feed via th	he trash screen to the Cit.				KEEL	
	1.5.11225-0.114201-0.11120				WHEN PERSON AND A CONTRACTOR				read t	
9.0 LEAC	H AND ADSORPTIC	N			Oxide	Fresh	Design			
		Slurry pH			- Andrew	- Andrews	10.5	A	Lyco	
		pH Modification				Quicklim	e on mill feed conveyor	A	Lyce	
	Leach Circui	t					and the second second second		1.4.1.1.1	
		Number of tanks	Oxidation	No.	0	0	0	A	Lyco	
			Pre-leach	No.	0	0	0	A	Lyco	
			CIL	No.	6	6	6	A	Lyco	
			Total	No.	6	6	6		Calc	
		Tail Solution Gold Grade	Target	g Au/m ²			0.03	A	Lyco	
				100					and and	
		Residence time for ultimate gold extraction		h	48	48		A	KEFT	
		Target residence time (CIL)		h	24	24		A	KEFI	
				7.923						
	Tank Size	Minimum Tank Volume Required	Total	m^2	8,116	7,202	8,116		Calc	
			Per tank.	ui _y	1,353	1,200	1,353		Calc	
	CIL Parameters									
		Carbon conc. in slurry	Range	g/L			5 - 15	A	Lyco	
	Burg.	Carbon conc. in slurry	Nominat	g/L			10	A	Lyco	
	Gold	Leached Solution Grade		g Au/m²	2.11	2.39			Calc	
		Loaded carbon	Design	g Au/t	2,425	2,724			Calc	
		Barren carbon	Design	g Au/t			100	B	Lyco	
	89400					0.00			10	
	Silver	Leached Solution Grade	Percent of the	g Aum"	1,10	0.96			Calc	
		Loaded carbon	Design	g Au/t	1,091	962	5 (Sala	1213	Calc	
		Barren carbon	Design	g Aut			100	B	Lyco	
				52	1.253	. D2			0.775	
	Carbon	Carbon advance rate	Nominal	6/d	6.0	5.3	1		Calc	
			Selected	t/day			6.0	В	Lyco	
		Sham, Immedia Cill, Inch 1		histoin					Long.	
		arony senarar on lank r		m ³ /h			100	в	Cale	
		Shurry transfer Cill tank 1 : Method				P	100		Luco	
		Sharry transfer Cill tanks 2 - 6		6.M		I.	ecosoci imponer pump	2	Luco	
		charty second card a real		m ² /h			100		Cale	
		Shurry transfer Cil. tanks 2 - 6 - Method					acessed impeller pump	8	Lynn	
		solid an out of minor of manual					accurate unbanne burnh.		cyco	
		Carbon type					Pica Cott.AS		Luco	
		Size		mesh			E + 12	B	Lyco	
		Carbon consumption rate	Nominal	kot Cil. fee	ed.		0.070	A	Lyco	
		Carbon in Circuit	Cit	1 Carbon		05	0.030	~	Calc	
		Consumption per day	SIL	kold	153	135			Calc	
i i	CIL Aeration	21 D2 D2			155	e area				
	an 1983 an 1985 an	Туре					Blower Air	A	KEFI	1
		Oxygen uptake rate	CIL Tanks	mg O ₂ L/mi	n 0.018	800.0	0.018	A	KEFI	1
		Oxygen Percentage in Aeration Gas		%	a construction of the second se	112.002	21.0%	A	Industry	1.01
		Gas Density (@ Normal Conditions)		kg/m ³			1,185	A	Industry	
		Sparging Requirement	Total	Nm ³ /h	1,190	529	1,190		Calc	
		The second se	Total	kg/h			1,411		Calc	
		CIL Aeration demand per day	Total	bid			34		Calc	
1	Intertank Screen									
		Туре					Vertical, Mech. Swept	A	Lyco	
		Slurry Discharge				Top	discharge into launders	A	Lyco	
		Cloth					SS Wedge Wire	A	Lyco	
		Aperture		mm			0.83	A	Lyco	
		Maximum screen flow	Oxide ore	min			438		Calc	
, i	Loaded Carbon Red	covery Screen								
		Type					Vibrating, Horizontal	A	Lyco	
		Deck					Polyurethane	A	Lyco	
		Aperture		mm		0.7 m	im x 12 mm, co-current	A	Lyco	
		Flowrate	Słuny	m3/h			100		Calc	
		Screen Spray Water		m ¹ /h			8	A	Lyco	
	Carbon Safety Scre	en								
		Туре					Vibrating, Horizontal	A	Lyco	
		Deck					Polyurethane	A	Lyco	
		Aperture		mm		1.0 mm	x 12.0 mm , inline flow	A	Lyco	
		Flowrate	Silurry incl spray water	m ³ /h	360	322	360		Calc	
		Carbon Discharge		1000			Bin to suit IT-28 CAT	A	KEFI	
		Screen Spray Water		m'/h			10	A	Lyco	

Client	KEFI Minerals Eth	tiopia PLC			Date	23-Aug-16	Revis	sion	В	-
Project	Tulu Kapi Gold Pi	roject					Prepar	red	DG	
Document	PROCESS DESIG	N CRITERIA			Job Number	1953	Check	ted	LS	
				Units		and a star	F	ve5	Source	Ref
	Cyanide Addition									
		Testwork Cyanide Consumption	Range	kg/t	0.11 - 0.58	0.08 - 0.22		A	KEFI	1
			Selected	kg/t	0.28	0.13		A	KEFI	1
		Residual cyanide in CIL tails	Allowance	ppm NaCN	100	100		A	Assume	
		Plant Cyanide addition	Plant feed	kgit	0.40	0.25	0.40		Calc	
	Lime Addition									
		Testwork Lime Addition	Range	kg/t	0.29 - 6.5	0.32 - 0.59		A	KEFI	1
			Selected	kp/t	3.02	0.39		A	KEFI	1
		Available CaO, Testwork	Teshvork	% CaO			60	A	Test	
		Туре					CaO - Quicklime		Cald	
		Available CaO, Plant Supply	Plant	% CaO			90		Calo	
		Plant Lime Addition	Plant feed	kg/t	2.01	0.26	2.01		Calc	

10.0 ELUTION, ELECTROWINNING, CARBON REACTIVATION

Loaded carbon will be stripped by the Zadra method. The carbon will gravitate from the loaded carbon recovery screen to the acid wash column where acid washing will be performed. The carbon will then be transferred to the elution column for gold stripping. Gold in solution will be recovered by electrowinning. Recovered gold from the cathodes will be filtered. A dried and smelled in a furnace to doré bars. Lyco

The elution circuit / goldroom is required to operate on a 24 hour basis to enable the carbon loading to be maintained at levels that allow adsorption circuit efficiency to be maintained.	Lyco
---	------

Elution Circuit Desi	gn			Oxide	Fresh	Design		
	Type					Pressure Zadra	A	Lyco
	Selected column size		t/strip			6.0	в	Lyco
		Design	strip/week			7	A	Lyco
	Carbon batch volume (berl volume)		m ³			12.8		Cale
	Carbon - Gold	Londad	a.b., 8	2,426	3,734	18.10		Cale
	Call Doll - Chord	Berner	grant	2,420	400			Cala
	ALL	Barren	ground	100	100			Galc
	Carbon - Silver	Loaded	Bv0.t	1,091	962			Gale
		Barren	gAgit	100	100			Calc
	Solution Flowrate		BV/h			3.0	B	Lyco
			m ³ /h			38.3		Calc
	Total Bed Volumes		No.			36	в	Lyco
Acid Wash								
	Acid Type					HCL	A	Lyco
	Wash Arid Strength		The webs			3.0		Luco
	Acid Soak Volume		81/			0.00		Luno
	Time for and analy		OV			0.60	2	Lyco
	Time for acid soak		nours			0.5	~	Lyco
	Acid Rinse Volume		av			4.0	A .	Lyco
	Time for acid rinse		hours			1.3		Calc
	Acid Mix & Storage Tank Volume		BV			0.67	Α.	Lyco
		Design Live	m ³			9.0	в	Lyco
Strip Solution - Fres	sh Batch							
	Cvanide Strength Required		% w/v			0.2	A	Lyco
	Caustic Strength Required		the webs			20		Lyco
	Einate Volume		BV			2.0		Luna
	Country Country					2.0	~	Cale
	Water Mark With the State					20.0		Galic
-	Top Up Volume		BV			0.60		Lyco
Elution / Electrowin	ning		2.12					
	Elution Temperature		.C			140	A	Lyco
	Elution/Electrowin Time		h			12		Calc
	Number of Electrowinning Cells		No.			2	A	Lyco
	Type of Cathode					Stainless Steel	A	Lyco
	Cathodes per Cell		No.			22	B	Lyco
	Cell Size		mm			1.000 x 1.000	B	Lyco
	Current Efficiency		12.			10.0		Luco
	Portifier Cire		Alcol			4 500	2	Luno
	and the state of t		Avon .			4,500		cjeo
	Eluate Heater Fuel Type					Diesel	A	Lyco
	Fuel Consumption		L/strip			452	в	Lyco
	Flow Rate per Cell		m ³ /h			10.1		Cale
	Barren Solution Gold Grade		mail			<10	B	Lyco
	percir control control		ingre .					when
Chudon Basowany 8	Smalling		ton Auditau	11.0	12.0			Cale
Single recovery a	amennig		NG PW/GBY	14.0	1.3.9			Cale
			kg Agiday	6.0	4.0			Galc
			kg Au+Ag/day	20.0	18.5			Calc
	Sludge Bulk Density	Range	t/m*			4 - 6	A	Lyco
		Design	t/m"			4	A	Lyco
	Sludge Volume	Design Only	L/week	35	32			Calc
	Sludge removal Spray Pressure		kPag			25,000	в	Lyco
	Sludge Filter	Type				Vacuum Filter	в	Lyco
	122	Number	No.			1	A	Lyco
	Sludge Drving					Desing Over		Lyco
	Smalling Europe					brying oven	-	
	Elizate Chidea Datia					0.00		10000
	Plux to Slooge Ratio		11007550	22.2		0.25 : 1	~	LYCO
	Fumace Feed		L/week	43.8	40.4		_	Gale
	Crucible		Designation			A200	8	Lyco
	Fuel Type	54 10				Diesel	A	Lyco
		Operation	h/day			4	A	Lyco
Carbon Dewatering	Screen							
	Type				V	brating, Horizontal	A	Lyco
	Deck					Polyurethane	A	Lyco
	Aperture				0.7 mm x	12 mm, cross flow	A	Lyco
	Carbon Transfer		mins			30	A	Lyon
	Number of Bed Volumes	Design	No.					1.000
	Raw Water Required per Batch	a margin				-	1	Cale
	Carbon Transfer & Calid-		M. suchas			20		Galc
	Garbon transfer % 30805		The INCOME.			19		Galc

the second se	thiopia PLC			Date	23-Aug-16	Re	vision	B
Tulu Kapi Gold I	Project					Prep	ared	DG
nt PROCESS DESI	GN CRITERIA		dataset and t	Job Number	1953	Che	cked	LS
			Units				Rev	Sourc
Carbon Reactive	ation					100000-00000-000	120	0.000
	Type					Horizontal Kiln	A	Lyco
	Kiln Eard Honner Canadity		RV			Ground	-	Lyco
	tanti neo riskkai ceiteroit	Volume	m ³			19.1	0	Calc
	Kiln Capacity	Design	kp/h			300		Calc
	Kiln Operation		h/batch			20	A	Lyco
	Operating Temperature		°C			650 - 750	A	Lyco
	Retention Time at Operating Temp		mins			15	A	Lyco
	Fuel Type					Diesel	A	Lyco
	Fuel Consumption	Consumption	L/strip			630		Calc
Contract Contract								
Garbon Quench	Tune					Daw Water		Lucio
	Water Flowrate Requirement	Average	m ³ /h			3.0	B	Lyco
			m ³ /batch			60		Calc
Carbon Sizing S	Screen							
	Туре				v	brating, Horizontal	۸	Lyco
	Deck				Sana Lana-	Polyurethane	A	Lyco
	Aperture Cathon find ante	Planeta -	mm		1.1 mm x	12 mm, cross flow	A	Lyco
	Seruch neu nite	Nominal	49			0.30		Calc
Carbon Transfer	Water System							
	Туре				Kiln mounted	on top of CIL tanks	в	Lyce
	1976							-
ANIDE DESTRUCT	10N CIRCUIT							
Cyanide destructi	ion will use the SO ₂ /Air method. SO ₂ and oxygen in	the presence of a solub	le copper catalyst codd	ses the cyanide to the less to	kic compound cyar	ate (OCN). The		
SO2 will be gener	rated using sodium metabisulphite (5MBS). Copper	catalyst will be added a	is copper sulphate solu	tion. Oxygen will be supplied t	by sparging with ai	r, Sodium	в	KEF
hydroxide solution	n will be added to neutralise acid formed in the react	tion to maintain a pH 8.5	5 to 9.0.					
Cyanide Destruc	ction Process					SO ₂ /Air	B	KEFI
	Reactor Feed Sturry Density		% solids w/w	43.0%	42.6%	43.0%		Calc
	Reactor Feed Throughput	Solids	t/h	213	188	213		Calc
	Reactor Feed Solution Analysis	CN _{WAD}	g/m°			150	A	Lyco
		Copper	g/m*			5	A	Assum
		Iron	9/m*			4	~	Assum
		Zine	gm ³			0	2	Assum
		2,075	Shur			0	~	Assum
	Target Reactor Discharge CN _{WAD}	CN _{MAD}	g/m ³			50	A	KEFI
	Design Reactor Discharge CN _{wath}	CN _{WRD}	g/m ³			5	B	Lyco
	Required CN _{WAD} Reduction	CN _{MMD}	kg/h	40.9	36.6	40.9		Calc
	Reactor Residence Time Required		h			1.0	A	KEFI
	Air Holdup Allowance		26			15	A	Lyco
	Number of Reactors	Lion	NO.			2	â	Lyco
	Actual Residence Time	Live	min	53	50	182	8	Calc
	Poulai regidence rime	Live		23	09	03		Galc
			The	cyanide destruction tanks	can be operated i	n series or parallel	в	Lyco
Sulphur Dioxide	SMBS Required			La construction of the second second	and the second second	Contraction of the second	1000	1000
	Source	1	Na ₂ S ₂ O ₅ or SO ₂			SMBS (Na ₂ S ₂ O ₃₁	A	Lyco
	SO ₂ /CN WAD Weight Ratio		kg/kg			5.6	в	KEFI
	Na2S2Oy/CN WAD Weight Ratio		kg/kg			8.3		Calc
	SMBS Consumption Rate	Solid	kp/h	337	302	337		Calc
					and the	1.00		Calc
	SMBS Solution Consumption Rate		m'm	1.69	1.51	1.04		
Conner Subshat	SMBS Solution Consumption Rate		m'h	1.69	1.51	1.02		
Copper Sulphate	SMBS Solution Consumption Rate		m"h Cu o/m ³	1.69	1.51	1.08		VEE
Copper Sulphate	SMBS Solution Consumption Rate Required Chosen Copper Excess Copper Sulphate Required	Solid CuSO, 54.0	m"/h Cugim ³ kg/h	1.69	1.51	90	в	KEFI
Copper Sulphate	SMBS Solution Consumption Rate • Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate	Solid CuSO ₄ 5H ₂ O	m"/h Cugim ³ kg/h m ³ /h	1.69	1.51	90 174	в	KEFI Calc
Copper Sulphate	SMBS Solution Consumption Rate • Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate	Solid CuSO ₄ 5H ₂ O	m"/h Cug/m ³ kg/h m ³ /h	1.69 174 0.9	1.51 155 0.8	90 174 0.9	в	KEFI Calc Calc
Copper Sulphate	SMBS Solution Consumption Rate • Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate	Solid CuSO ₄ 5H ₂ O	m"/h Cu gim" kg/h m ³ /h	1.69 174 0.9	1.51 155 0.8	90 174 0.9	В	KEFI Calc Calc
Copper Sulphate pH Modification Caustic addition fi	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be i	Solid CuSO ₄ 5H ₂ O ncluded in the design, t	m ⁻⁷ h Cu gim ³ kg/h m ³ /h but it is only expected to	1.69 174 0.9 b be required if the pH of the s	1.51 155 0.8	90 174 0.9 e destruction tanks	B	KEFI Calc Calc
Copper Sulphate pH Modification Caustic addition fi deviates from the	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate for pH control in the cyanide destruction tank will be in ideal range of 6.5 to 9.0.	Solid CuSO ₄ 5H ₂ O ncluded in the design, t	m ⁻⁷ h Cu gim ³ kg/h m ³ /h but it is only expected to	1.69 174 0.9 s be required if the pH of the s	1.51 155 0.8	90 174 0.9 e destruction tanks	в	KEFI Calc Calc
Copper Sulphate pH Modification Caustic addition fi deviates from the	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate for pH control in the cyanide destruction tank will be in ideal range of 6.5 to 9.0. Reagent	Solid CuSO ₄ 5H ₂ O ncluded in the design, t	m ⁻⁷ h Cu gim ³ kg/h m ³ /h put it is only expected to	1.69 174 0.9 s be required if the pH of the s	1.51 155 0.8 Jurry in the cyanida	90 174 0.9 e destruction tanks NaOH Solution	B B	KEFI Calc Calc Lyco Lyco
Copper Sulphate pH Modification Caustic addition fi deviates from the	SMBS Solution Consumption Rate chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 6.5 to 9.0. Reagent Reagent Reagent Reagent Required	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH	m ⁻⁷ h kg/h m ³ /h but it is only expected to kg/h	1.69 174 0.9 be required if the pH of the s 142	1.51 1.55 0.8 Jurry in the cyanida	90 174 0.9 e destruction tanks NaOH Solution 142	B B B	KEFI Calc Calc Lyco Calc
Copper Sulphate pH Modification Caustic addition fi deviates from the	SMBS Solution Consumption Rate Prequired Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be i ideal range of 8.5 to 9.0. Reagent Reagent Reagent Required	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ⁻⁷ h kg/h m ³ /h but it is only expected to kg/h m ³ /h	1.69 174 0.9 be required if the pH of the s 142 0.7	1.51 1.55 0.8 Jurry in the cyanida 127 0.6	90 174 0.9 e destruction tanks NaOH Solution 142 0.7	B B	KEFI Calc Calc Lyco Calc Calc
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate for pH control in the cyanide destruction tank will be in ideal range of 6.5 to 9.0. Reagent Reagent Required Source	Solid CuSO ₄ 5H ₂ O included in the design, t Solid NaOH Solution	m ³ h kg/h m ³ h but it is only expected to kg/h m ³ /h	1.69 174 0.9 s be required if the pH of the s 142 0.7	1.51 1.55 0.8 Jurry in the cyanida 127 0.6	90 174 0.9 e destruction tanks NaOH Solution 142 0.7	BBB	KEFI Calc Calc Lyco Calc Calc
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 6.5 to 9.0. Reagent Reagent Reagent Required pured Oxygen Source Oxygen Source	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ³ h Kg/h m ³ h but it is only expected to kg/h m ³ /h	1.69 174 0.9 be required if the pH of the s 142 0.7	1.51 1.51 0.8 Jurry in the cyanida 127 0.6	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air	B B B	KEFI Cale Cale Lyco Cale Cale KEFI
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 6.5 to 9.0. Reagent	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ² /h kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h	1.69 174 0.9 9 be required if the pH of the s 142 0.7 82	1.51 1.51 0.8 Jurry In the cyanida 127 0.6 73	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82	B B A	KEFI Cale Cale Lyco Cale Cale KEFI Cale
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req	SMBS Solution Consumption Rate Prequired Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 8.5 to 9.0. Reagent	Solid CuSO ₄ 5H ₂ O Included in the design, I Solid NaOH Solution	m ² h Kg/h m ³ h but it is only expected to kg/h m ³ h kg/h %	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352	1.51 1.55 0.8 lurry in the cyanida 127 0.6 73 315	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352	BBAAAA	KEFI Cale Cale Lyco Cale Cale KEFI Cale
Copper Sulphate pH Modification Caustic addition f deviates from the Air / Oxygen Req	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 8 to 9.0. Reagent Reagent Reagent Reagent Reagent Required Oxygen Source Oxygen Required Air Required Air Transfer Efficiency Actual Blower Air Required	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ² /h kg/h m ³ /h but it is only expected to kg/h m ² /h kg/h kg/h % Nm ³ /h	1.69 174 0.9 b be required if the pH of the s 142 0.7 82 352 1.975	1.51 1.51 0.8 lurry in the cyanida 127 0.6 73 316 1.770	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 1987	B B A A	KEFI Calc Calc Lyco Calc Calc Calc Calc Calc Lyco Calc
Copper Sulphate pH Modification Caustic addition f deviates from the Air / Oxygen Req	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 8 to 9.0. Reagent Reagent Reagent Reagent Reagent Required Oxygen Source Oxygen Required Air Required Air Transfer Efficiency Actual Biower Air Required	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ⁻⁷ h kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h % Nm ³ /h	1.69 174 0.9 b be required if the pH of the s 142 0.7 82 352 1.978	1.51 1.51 0.8 lurry in the cyanida 127 0.6 73 316 1,770	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982	B B A A	KEFI Cale Cale Lyco Cale Cale Cale Cale Cale Cale Cale Cale
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req LINGS STORAGE F	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate for pH control in the cyanide destruction tank will be in ideal range of 8.5 to 9.0. Reagent Reagent Reagent Reagent Required Surred Oxygen Source Oxygen Required Air Required Air Transfer Efficiency Actual Blower Air Required FACILITY	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ² /h kg/h m ³ /h but it is only expected to kg/h m ² /h kg/h kg/h % Nm ³ /h	1.69 174 0.9 b be required if the pH of the s 142 0.7 82 352 1,978	1.51 1.51 1.55 0.8 1000 127 0.6 73 316 1,770	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982	B B A A	KEFI Cale Cale Lyco Cale Cale Cale Cale Cale Cale Cale Cale
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req LINGS STORAGE F Stury from the cys	SMBS Solution Consumption Rate e Required Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 8.5 to 9.0. Reagent Reagent Reagent Required Oxygen Source Oxygen Required Air Required Air Transfer Efficiency Actual Blower Air Required FACILITY anide destruction facility will be pumped to the tailing	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ² /h kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h kg/h S Nm ³ /h	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352 1.978	1.51 1.51 1.55 0.8 1urty in the cyanida 127 0.6 73 316 1,770	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982	B B A A A	KEFI Cale Cale Lyco Cale Cale Cale Cale Cale Cale Cale Cale
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req LINGS STORAGE F Stury from the cy Taillings to TSF	SMBS Solution Consumption Rate Prequired Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 8.5 to 9.0. Reagent Reagent Required Surred Oxygen Source Oxygen Required Air Required Air Required Air Transfer Efficiency Actual Blower Air Required FACILITY anide destruction facility will be pumped to the tailing	Solid CuSO _x 5H ₂ O included in the design, t Solid NaOH Solution	m ² /h kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h kg/h % Nm ³ /h	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352 1.978 <u>Qxide</u>	1.51 1.51 1.55 0.8 lurry in the cyanida 127 0.6 73 315 1,770 <u>Eresh</u>	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982 Design	B B A A A	KEFI Cale Cale Lyco Cale Cale Cale Cale Cale Cale Lyco Cale
Copper Sulphate pH Modification Caustic addition f deviates from the Air / Oxygen Req LINGS STORAGE F Slumy from the cy Tailings to TSF	SMBS Solution Consumption Rate Prequired Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in ideal range of 6.5 to 9.0. Reagent Reagent Required Quyen Source Oxygen Required Air Required Air Required Air Transfer Efficiency Actual Biower Air Required FACILITY anide destruction facility will be pumped to the tailing Feed rate	Solid CuSO _x 5H ₂ O Included in the design, t Solid NaOH Solution	m ² /h kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h kg/h % Nm ³ /h	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352 1.978 <u>Oxide</u> 213	1.51 1.51 1.55 0.8 kurry in the cyanida 127 0.6 73 315 1,770 <u>Fresh</u> 188	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982 <u>Design</u> 213	B B A A A	KEFI Cale Cale Lyco Cale Cale Cale Cale Cale Lyco Cale Cale Cale
Copper Sulphate pH Modification Caustic addition f deviates from the Air / Oxygen Req LINGS STORAGE F Slumy from the cy Tailings to TSF	SMBS Solution Consumption Rate Prequired Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in deal range of 6.5 to 9.0. Reagent Reagent Required Sured Oxygen Source Oxygen Required Air Required Air Transfer Efficiency Actual Blower Air Required FACILITY anide destruction facility will be pumped to the tailing Feed rate Einel Tailons & Colder	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution	m ² /h kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h kg/h % Nm ³ /h th	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352 1.978 <u>Oxide</u> 213 291	1.51 1.51 1.55 0.8 1000 127 0.6 73 315 1,770 <u>Eresh</u> 188 259	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982 2 2 2 19 2 19 2 19 2 13 319	BBAAA	KEFI Cale Cale Lyco Cale Cale Cale Cale Lyco Cale Cale Cale Cale Cale
Copper Sulphate pH Modification Caustic addition f deviates from the Air / Oxygen Req LINGS STORAGE F Slury from the cy Taillings to TSF	SMBS Solution Consumption Rate Prequired Chosen Copper Excess Copper Sulphate Required Copper Sulphate Solution Consumption Rate or pH control in the cyanide destruction tank will be in- ideal range of 6.5 to 9.0. Reagent Reagent Required Suired Oxygen Required Air Required Air Transfer Efficiency Actual Blower Air Required FACILITY anide destruction facility will be pumped to the tailing Feed rate Final Tailings % Solids	Solid CuSO ₄ 5H ₂ O Included in the design, t Solid NaOH Solution pa storage facility. Solids	m ² /h kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h kg/h % Nm ³ /h th th	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352 1.978 Quide 213 291 42.2	1.51 1.51 1.51 1.55 0.8 1.08 127 0.6 73 315 1,770 <u>Fresh</u> 188 259 42.0	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982 19 1,982	B B A A A	KEFI Calc Calc Calc Calc Calc Calc Calc Calc
Copper Sulphate pH Modification Caustic addition f deviates from the Air / Oxygen Req Lings STORAGE F Surry from the cy Tailings to TSF	SMBS Solution Consumption Rate	Solid CuSO ₄ 5H ₂ O Included in the design, I Solid NaOH Solution ga storage facility. Solids Solution	m ² h kg/h m ³ /h but it is only expected to kg/h m ² /h kg/h kg/h % Nm ³ /h bh th th	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352 1.978 Qxide 213 291 42.2 291	1.51 1.51 1.55 0.8 107 127 0.6 73 315 1,770 <u>Fresh</u> 188 259 42.0 259	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982 <u>Destion</u> 213 319 40.0 397	B B A A A	KEFI Calc Calc Calc Calc Calc Calc Calc Calc
Copper Sulphate pH Modification Caustic addition fi deviates from the Air / Oxygen Req LINGS STORAGE F Sturry from the cy Tailings to TSF	SMBS Solution Consumption Rate	Solid CuSO ₄ 5H ₂ O Included in the design, I Solid NaOH Solution	m ⁵ h Cu gim ³ kg/h m ³ /h but it is only expected to kg/h m ³ /h kg/h % Nm ³ /h bh th th % w/w m ⁴ /h	1.69 174 0.9 be required if the pH of the s 142 0.7 82 352 1.978 Oxide 213 291 42.2 291	1.51 1.51 1.51 1.55 0.8 127 0.6 127 0.6 73 315 1,770 <u>Fresh</u> 188 259 42.0 259	90 174 0.9 e destruction tanks NaOH Solution 142 0.7 Blower Air 82 352 15 1,982 Design 213 319 40.0 397	B B B A A A A	KEFI Cale Cale Cale Cale Cale Cale Cale Cale

Client	KEFI Minerals Ethic	pia PLC		_	Date	23-Aug-16		rision	B	
Project	Tulu Kapi Gold Pro	ject					Prep	ared	DG	
Document	PROCESS DESIGN	CRITERIA			Job Number	1953	Che	cked	LS	-
1999-00-1997-00-1 1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997- 1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00-1997-00		Construction of the second		Units				Rev	Source	Ref
	TSF Water Balance									
	Water in Final Tailing	5e	Average	m5h	288	262			Calc	
	Water Retained in T	SF Tails	Average	mbh	91	91			Calc	
		Consolidated Tails % Solids	Average	% w/w	70	70		8	Assume	
	Decant Return		Average	m®h	158	131			Calc	
			Maximum	m5h				8	Assume	
		% Water in Tailings to Decant Return	Average	%	55	50		8	Assume	
			Maximum	m ^z /h				8	Assume	
13.0 REA	GENT STORAGE/MD	CING		1120	Oxide	Fresh	Design		10.539	
	On Site Bulk Storag	e of Reagents	Number of Days	No.			14	8	KEF	
	1000	grand and								
	Lime	Consumption								
		CIL	Nominal	kg/t ore	2.01	0.26			Calc	
		5	Nominal	kgm	428	49	428		Calc	
			Jesign Allowance	Pactor			150%	Α.	Lyco	
		Chamical form	Design	Kg/h			642		Carc	
		Available Line		N C+D			CaO - Quicksime	2	Lyco	40
		Cold SC		71 080			90	2	hereiter	10
		Dusical from supplied					3.30	-	Vendor	
		Dalivery / narking					Powder Builta Base	~	Linco	
		Delivery / packing		1.00			Duina Daga	2	Vandor	
		Slorace method					file	2	Luna	
		Storage capacity	1 Tore				010	~	Cale	
		country capacity	Rhominal		12	103	9.		Cale	
		Bulk Reagant Storage	Buchunin		12	100			Course.	
		Storage Method					Rescond Shed		Linn	
		Storage Canacity (based on Operating Usage Rate)			144	16	mengern oneo		Cale	
		country and and the set of a s			114				Control .	
	NaCN	Consumption								
	115717.1	CIL	Nominal	ko/t ore	0.40	0.25	0.40		Calc	
			Nominal	koh	85	47	85			
		r	Sesion Allowance	Factor			150%	A	Lyco	
			Design	koh			128		Calc	
		Elution		kg/strip			66		Calc	
		TOTAL	Design	6/3			3.1		Calc	
							1712.0		20242-3	
		Physical form supplied					Briguettes	A	Vendor	
		Delivery / packing		type			Bulka Box	A	Vendor	
		Delivery size		t .			1	A	Vendor	
		Solution strength		w/v% NaC	N		20	A	Lyco	
		Solution SG					1.10	A	Vendor	
		Solution Consumption	Design	m ² /h			0.7		Calc	
			Range	m3/h			0-2	A	Lyco	
		Dosing					Ringmain	A	Lyco	
		Mixing Tank	Live capacity	m ³			15	в	Lyco	
			@ Design	h			23		Calc	
		Fresh water required	@ Design	m ³ /day			13		Calc	
		Storage Tank	Live capacity	m ³			25	в	Lyco	
			@ Design	h			38		Calc	
		Buik Reagent Storage								
		Storage Method					Reagent Shed	A	Lyco	
		Storage Capacity (based on Operating Usage Rate)		t	30	17			Calc	
	10.227									
	NaOH	Consumption								
		Elution.		kg/strip			664		Calc	
		CN Detox	Nominal	kg/d	3,409	3,052	3,409		Calc	
		TOTAL	Nominal	kg/d	4,073	3,716	4,073		Calc	
		0	esign Allowance	Factor			120%	A	Lyco	
		The second second second second	Design	kg/d			4,888		Calc	
		Physical form supplied		55			Peari	A	Vendor	
		Delivery / packing		type			Bags	A	Vendor	
		Derively size		kg			25	A	Vendor	
		Solution strength		wiv% NaO	1		20	A	Lyco	
		solution SG	12257120-0	1.00			1.08	A	Vendor	
		Total Solution NaOH	Design	m7d		10.000	24.4		Calc	
			Operating	m7d	20.4	18.6	20.4	12.5	Calc	
		Moung	storage capacity	m			15	A	Lyco	
		Frank senter marine 4		h		1227	15		Calc	
		Press Water required		m /day (av)	9) 18	19	15		Cale	
		Characteria Storage						110	ACCRED.	
		Storage Method					Reagent Shed	A	Lyco	
		alorage capacity (based on Operating Usage Rate)		1	52	.52			Calc	

Tuby Kani Cold Dre	unet			Date	23-9400-10	Die	VISION	P
PROCESS DESIGN	net correctia			ALC: N. W. S. S.	1050	Ртер	ared	DG
PROCESS DESIGN	GRITERIA		11-11-	Job Number	1953	Che	oked	LS
			Unita				Rev	Source
1471	Commenter							
HUL	Consumption	100000000000000000000000000000000000000	10/24/24/2017			19 A 1		
	Elution	Conc Acid	kg/strip			718		Calc
		Conc Add	m" /week			4.3		Calc
		Diluted Acid	L/strip			6,607		Calc
	Physical form supplied					Conc acid solution	A	Vendor
	Delivery / packing					Isotainers	A	Vendor
	Delivery Size					1.000	A	Vendor
	Supply acid strength	Cone Arid	Window.			1,000	1	Vandor
	Supply and addings	Conc Moo	Newering			34	-	Vendor
	Supply and SG		1.00			1,16	•	Vendor
	Solution mix strength	Diluted Acid	"www.			3		Calc
	Mix tank	Live	m			9		Calc
	Fresh water required		m²/day (avg)			5.7		Calc
	Bulk Reapent Storage							
	Storage Method					Reagent Shed	A	Lyco
	Storage Capacity (based on Operating Usage	Rate)	m ³			9		Cale
Copper Sulphate	Consumption							
a shihar a scholare	Cuspide Destruction Cimult	Récommission	ban B	0.81	0.00			Cale
	cymate a san acain a sun	Provide the same	Ngri	0.02	0.83	0.82		Gaic
		12246-04220-04230	kgm	174	155	174		Calc
		Design Allowance	Factor			100%	8	Lyco
		Design	kg/h			174		Calc
			May			4.2		Calc
	Physical form supplied					Solid, Crystals	A	KEFI
	Delivery / packing					Bags	A	KEFI
	Delivery Size		kg			25	A	KEFI
			S7.5					
	Solution Concentration		15 wh				A	Luna
	Solution SG		11-2			20	-	Lyco
	Solution Consumption	Manhad	UM .	0.67	0.77	1.11	0	HOUSTY
	Solution Consumption	Nominal	mm	0.87	0.77	0.87		Calc
		Design	m-m			0.87		Calc
	Mixing		bags/mix			40	A	Lyco
	Mixing Tank	Live capacity	m			5	A	Lyco
		@ Design	h			6		Calc
	Fresh water required	(i) Design	m ³ /day			17		Calc
	Storage Tank	Live capacity	m ³			5.0	A	Lyco
		@ Design	h			6		Calc
	Bulk Reagent Storage							
	Storage Method					Personal Shad		1 1000
	Storage Capacity (based on Operating Usage	Date)		50	. 69	ivengen anea	~	Cale
	country contract (names on obergoing control	a second		60	-116			valu
Sodium Metabiaulo	hite							
acaram metablicaci	Consumption							
	Consumption		12.22			100		27
	Cyanide Destruction Circuit		KQ1	1.59	1,61	1.59		Calc
			kg/h	337	302	337		Calc
		Design Allowance	Factor			100%	B	Lyco
		Design	kgh			337		Calc
			t/day			8.1		Calc
	Physical form supplied					Solid, Flake	A	KEFI
	Delivery / packing					Bulk Bacs	A	KEEL
	Delivery Size					tout buys		VED
	and and		0.5			1.0	~	MEP1
	Solution Concentration		the sector			(ga)	14	11.21
	Solution SCI					20	~	Lyca
	Solution Sta	46775005	um.	(1995) -	12234	1.06	A	Lyco
	Solution Consumption	Nominal	(f)(72)	1.7	1.5			Calc
		Design	m"h.			1.7		Calc
	Mixing		bags/mix			3	A	Lyco
	Mixing Tank	Live capacity	m ³			15	A	Lyco
		(D Design	h			g		Calo
	Fresh water required	@ Design	m ³ /day			35		Cale
	Storage Tank	Live capacity	m ³			25	A	Lypp
	5	(Design	h			10		Cale
	Bulk Reacent Storace	an example	20			10		Same
	Storage Method					Research Street	-	1 mm
	Storage Capacity (based on Operation Lines-	Rate	1	1.000	1.000	reagent shed		Calo
	somethe celebrory (neses on operating gage	(second)	.1	113	101			Gald
Anti-mined Decision	Pageware							
Activated Carbon	S-07564750000	021010-040040	122333					62.55
	GIL	Allowance	g/t one			30		Caic
		Nominal	kg/day	153	135	153		Calc
	Туре					Pica G211-AS		Calc
	Physical form supplied					Solid	A	Industry
	Delivery / packing					Baos	A	Industry
	Delivery size		kg			500	A	Industry
						000		and a state of a
	Carbon Bulk Density							Industry
	Bulk Descent Stores					0.47		moustry
	Dum repagent arorage							
	Channes Mathing							
	Storage Method			1	5-11	Reagent Shed	A	Industry

Client	KEFI Minerals Ethi	iopia PLC			Date	23-Aug-16	Re	vision	в	_
Project	Tulu Kapi Gold Pro	oject					Prep	ared	DG	_
Document	PROCESS DESIGN	CRITERIA			Job Number	1953	Che	cked	LS	
		e i Artic Holy I		Unita	I		(C.M.	Rev	Source	Re
	Grinding Media	Consumption		kg/t	0.94	0.94			Calc	
				t/day	4.8	4.2			Calc	
		Physical form supplied					Steel Balls	A	Vendor	
		Delivery / packing		type			Drums	A	Vendor	
		Delivery size		kg			900	A	Vendor	
		Bulk Reagent Storage								
		Storage Method					Reagent Shed	A	Lyco	
	2258.6723	Storage Capacity (based on Operating Usage F	tate)	1	67	59		A	Assume	
	Diesel									
		Storage Type	122.72	12.44			Plant Diesel Day Tank	A	Lyco	
		Storage Capacity	Live	m.			5	B	Lyco	
		Plant Diesel Delivery					Constant head tank	A	Lyco	
		Consumption								
		Elution Heater		Listrip			452		Calc	
		Smelang Furnace		L/pour			100		Calc	
		Carbon Regeneration run		Listip			630		Calc	
		1 CCM		KL/Week			7,7			
14.0 WAT	ED EVETEM				0.11-	e.cer				
14.0 MAL	Process Water	Source			Oxide	Fresh	Design		1	
	Process Water	Bincess Water Consumption	A	-2A	22.4	PCarw	Water / Decant Return	•	Lyco	
		Provess Water Consumption	Maximum	m ³ /h	264	2.30	204		Cale	
			Average	m ³ /day	310	241	5 220		Calc	
			even by a	in sury			0.329			
		Storage	Tune				Tank		Lines	
		Capacity	1 jun	m ²			500		Lung	
		outputty	@ Nominal Elow		19	21	200		Calc	
			Stream and them			36.1			Othe	
	Raw Water	Main Raw Water Storage (off site)								
	1900 - CANADAR S	Source				Raw water div	ersion dam (by others)	8	KEFI	
		Capacity		m ²		The second day	TRA	B	KEFI	
							(Jan		T that I	
		Plant Raw Water Storage								
		Raw Water Consumption (Excluding makeup)	Average	m ³ /h	34.8	33.1	34.8		Calc	
		23 21 21 12	Maximum	m ³ /h	103	112	112.2		Calc	
			Average	m ³ /day			835		Calc	
			170				222			
		Raw Water Consumption (Including makeup)	Average	m ³ /h	173	161	173		Calc	
			No Decant Return	m ³ /h	334	308	334		Calc	
			Average	m ³ /day			4,164		Calc	
		Capacity	Average	n	4.1	4.4			Calc	
			No Decant Return	n	2.1	2.3			Calc	
		Storage	Type				Tank	A	KEFI	
		Capacity	Total Live	m ^a			1,000	в	Lyce	
	Potable Water	Potable Water Source					Raw Water	A	KEFI	
		Main Storage / Potable Water Plant	Location				Plant / Camp	в	KEFI	
		Potable Water Storage								
		Camp		1.00						
		Potable Water Tank	Live	m"			50	A	KEFI	
			@ Avg Usage	days			0.7		Calc	
		Ellant								
		Source		1.2		Separate Pla	int Potable Water Plant	в	KEFI	
		Potable Water Tank	Nominal	m.,			50	в	Lyco	
			@ Avg Usage	days.			1.4		Calc	
		120100-012000-012000-0000-0000								
		Potable Water Consumption								
		MARCE N.					0.000	100	And the second second	
		Number of personnel	B	NO.			500	A	KEFI	
		Domestic use	Per Head	La			150	A	KEFI	
		Point Number of semanal		A1-					and the second	
		Promotion of personnel	Deckland	140.			240	^	REFI	
		Other	Per Plago	Ud			70	A	ryco	
		Allowance	(Direct Arres)	·				-		
		Total Estable Water Consumed	(riant versa)	mild		-	20		Cale	
		That Postare Water Consumpt		111 74			312		Gaic	
		Potable Water Treatment Plant - Process Plant	Only							
		Treatment method				iltration Chlorie	nation. UV starilization		KEEL	
		Deison Operating Hours		h/day	,	and an and a second for	19000 - Foreiningenoon		Luco	
		Design Feed rate		m3m			2	-	Calc	
		Feed Rate	@ Ava Lisaae	min			15		Cale	
			de unh conhe				1.5		trains.	
15.0 WATE	ER SUPPLY				Oxida	Frank	Desire			
	Raw Water Pumps	(Raw Water Diversion Dam)			MAINE	Links	Para and a			
		Number of Pumps				1 1	ty (+uninstalled spare)		Lyco	
		Pumping Destination					Plant Raw water tank	A	Lyco	
		Plant River Water Requirement	Average	m ² /h	173	161	175	and a	Calc	
		60 C	No Decant Return	m ⁸ m	334	308	334		Calc	
		Required Pumping Flowrate	Minimum	m ³ /h		0780	334		Calc	
		1.77							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Client	KEFI Minerals Ethic	opia PLC				Date	23-Aug-16	Rev	ision	в	
Project	Tulu Kapi Gold Pro	ect					1.	Prep	ared	DG	
Document	PROCESS DESIGN	CRITERIA				Job Number	1953	Chec	ked	LS	
					Units		11 1100		Rev	Source	Ref
	Decant Return Pum	ups .					1 duty (+	uninstalled spare)	A	KEFI	
		Pumping Destination					P	rocess Water Pond	A	KEFI	
		Water Recovered from Tailin	ngs 1	00% Return	m ³ /h	291	259	291		Calc	
				Average	m²/h	158	131	158		Calc	
	Water Rec	uired for Raw Water Duties during Dry Seat	son	Average	m³/h	173	161	173		Calc	
		Total Decant Return during Wet Seas	son	Average	m ² /h	158	131	158		Calc	
		Total Decant Return during Dry Seas	son	Average	m³/h	332	292	332		Calc	
16.0 AIR											
	Plant Air	Compressor Type					Rotary sc	rew with air dryers	A	Lyco	
		Number of Units						2	A	Lyco	
		Delivery Volume	Each		Nmillar			500	A	Lyco	
		Delivery Pressure			kPag			750	A	Lyco	
	CIL/CN Destruct Air	Blower Type							A	Lyco	
		Number of Units						3	A	Lyco	
		Configuration					2 x	Duty + 1 x Standby	A	Lyco	
		Air Addition for Leaching Circuit Tanks			Nm ³ /hr			1,190		Calc	
		Air Addition for Cyanide Destruction			Nim ³ /hr			1,982		Calc	
		Total Air			Nm ³ /hr			3,173		Calc	
		Delivery Pressure			kPag			TBC	A	Lyco	

17.0 REFERENCES

1 KEFI Minerals SECTION 6 Metallurgical Testwork and Process Plant Design July 2015

2 ALS AMMTEC Report A14136 - Fresh Ore June 2012

3 OMC - Comminution Circuit Evaluation with 1.2 Mtpa mine schedule Ore Blends

4 Outotec Thickening Testwork Report S200TB Tulu Kapi Gold Part B 16-4-12

5 ALS AMMTEC Report No A14207

6 SP581 Tulu Kapi Reagent Consumption and Cost Response to KEFI 16-10-15

7 OMC Mill Size Selection Report No 26031 8-10-15

8 Lycopodium Proposal KEFI Minerals Ethiopia Tulu Kapi Gold Project Plant and Infrastructure EPC 29 April 2016

9 TK Mine Schedule - 10 May 2016

10 Email from D. Paget 22/6/16

11 OMC Tulu Kapi Mill Size Report 7743 Rev A July 2016 12 KEFI Minerals -PROCESS_schedule-July_2016.xls, 4 July 2016

13 TQ 1 Response - 21/7/2016

14 TQ 2 Response - 21/7/2016

15 OMC - Tulu Kapi Mill Size, Report No. 7743 Rev 0, July 2016

Project Tulu Kapi Gold Project Client KEFI Minerals Ethiopia PLC Date 23-Aug-15 Revision B Mass Balance - OXIDE ORE

nuew	AA GODI
Proces	a Water
Rea	gents

Crushing

 Sturry SG
 1.00
 0.00

 1) Dust suppression & service points water addition and evaporation asumed to result in no net moisture gain.

Surge Bin and Reclaim

Stream Name		Ore	Surge / Dead Stockpile Dust	Crushed Ore to Surge Bin	Total New Ore to Mill Feed Conveyor	Addition to Mill Feed	Feed to Mill from Feed Conveyor
Solids	t/h	243		213	213	0.64	213
% Solids	%w/w	95.0%		95.0%	95.0%	100%	95.0%
Solids SG	122	2.70	1 542	2.70	2.70	3.30	2.70
Solution	s/n	13	10	11	11	0.00	11
Solution SG	100	1.00	1.00	1.00	1.00	1.00	1.00
Total Stream	t/h	255	10	224	224	0.64	224
Volumetric Flow Slurry SG	m³/h		10				

1) Dust suppression water addition and evaporation asumed to result in no net moisture gain.

Milling

Stream Name		New Milling Circuit Feed	Cyclone U/Flow	Total Mill Feed	Mill Dilution Water	Mill Discharge	Mill Trommel Sprays	Mill Trommel Oversize	Mill Trommel Undersize	Mill Hopper Dilution	Cyclone Feed Pump Gland	Cyclone Feed	Cyclone Overflow	Cyclone Underflow
Solids % Solids Solids SG Solution Solution SG Total Stream Volumetric Flow	th %w/w th th m ⁵ h	213 95.0% 2.70 11.2 1.00 224	531 74.0% 2.70 187 1.00 718 383	744 79.0% 2.70 198 1.00 942 473	50 1.00 50 50	744 75.0% 2.70 248 1.00 992 523	20 1.00 20 20	0	744 73.5% 2.70 268 1.00 1,012 543	166 1.00 155 166	2 1.00 2 2.0	744 63.0% 2.70 436 1.00 1,180 712	213 46.0% 2.70 249 1.00 462 328	531 74,0% 2.70 167 1.00 718 383
Slurry SG			1.87	1,99	1.00	1.89	1.00		1.86	1.00	1.00	1.66	1.41 Recirc Load	1.87

Trash Screening

Stream Name		Cyclone Overflow	Trash Screen Feed	Trash Screen Spray Water	Trash Screen Oversize	Total Trash Screen Underflow
Solida	sh	213	213		0.0	213
% Solids	%w/w	46.0%	46.0%		85.0%	45.0%
Solids SG	- 20100L	2.70	2.70		2.70	2.70
Solution	t/h	249	249	10	0.0	259
Solution SG		1.00	1.00	1.00	1.00	1.00
Total Stream	t/h	462	462	10	0.0	472
Volumetric Flow	m ³ /h	328	328	10	0.0	338
Slurry SG	a second	1.41	1.41	1.00	0.0	1.40

CIL

Stream Name		Trash Screen Underflow to CIL	Cyanide Addition	Loaded Carbon Spray Water	Dilution Streams - Elution & Regen	Plant Washdown Water	Regenerated Carbon Quench Water	Carbon Sizing Screen Sprays	Carbon Safety Screen Feed	Carbon Safety Screen Sprays	Carbon Safety Screen Undersize	Total CIL Tails (Avg)
Solids	t/h	213							213		213	213
% Solids	26w/w	45.0%							43.9%		43.0%	43.0%
50005 5/3	100	2.70	10000	04.0	1.200	23	0.252	23	2.70	0.65	2.70	2.70
Solution	Un	259	0.43	2	2.4	0	2.5	5	272	10	282	282
Solution SG	1.1	1.00	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Total Stream	1/h	472.0	0.43	2	2	0	3	5	484	10	494	494
Volumetric Flow	m ² /h	338.2	0.39	2	2	0	.3	5	350	10	360	360
Slurry SG		1,40	1,10	1.00	1.00	0.00	1.00	1.00	1.38	1.00	1.37	1.37

Cyanide Destruction & Tails Pumping

Stream Name		Total Cyanide Destruct Tank Feed	SMBS Addition	CuSO4 Addition	NaOH Addition	Cyanide Destruct Discharge	Misc. Streams to Taits Hopper	Dilution Streams - Acid Wash Taits	Tails Hopper Feed	Tails D/C Pump 1 Gland Water	Tails Line 1 D/C at Tails Dam	Tails D/C Pump 2 Gland Water	Tails Line 2 D/C at Tails Dam	Total Tailings to TSF
Solids % Solids Solids SG	t/h %w/w	213 43.0% 2.70				213 42.7% 2.70			213 42.5% 2.70		106 42.2% 2.70		106 42.2% 2.70	213 42.2% 2.70
Solution Solution SG	t/h	282 1.00	1.79	0.97	0.77	285	0	2.5	288	1.5	145	1.5	145	291
Total Stream	t/h	494	1.79	0.97	0.77	498	0	2.5	500	1.5	252	1.5	252	503
Siurry SG	Im /m	1.37	1.09	1.11	1.08	1.37	0.00	1.00	1.37	1.0	1.36	1.5	185	369

Water

Stream Name		Total Process Water Not into Slurry	Process Water Streams	Reagents - Water into Slurry	Process Water Spray Streams	Process Water Dilution Streams	CIL - Raw Water into Siurry
Solids % Solids Solids S/3	t/h %w/w						
Solution Solution SG	1/h	15 1.00	259 1.0	3.5 1.00	42 1.0	216 1.0	12.4 1.00
Total Stream Volumetric Flow Slutry SG	t/h m ³ /h	15 15 1.00	259 259 1.00	3.5 3.5 1.00	42 42 1.00	216 216 1.00	12 12 1.00

Project	Tulu Kapi Gold Project	Bone Water
Client	KEFI Minerals Ethiopia PLC	Filtered Water
Date	23-Aug-16	Process Water
Revision	0	Reagents

Mass Balance - PRIMARY ORE (DESIGN BLEND)

Stream Name		ROM One	Primary Crusher Discharge	Crushing & Screening Dust Suppress. ¹	Service Points ¹
Solida % Solids Solids SG Solution Solution SG Total Stream	tih %w/w tih	214 95.0% 2.68 11 1.00 225	214 95.0% 2.68 11 1.00 225	5 1,00 5	0 1.00 0
Slurry SG	m /h			1.00	0.00

1) Dust suppression & service points water addition and evaporation asumed to result in no net moisture gain.

Ore Storage and Reclaim

Stream Name		Crushed Ore	Dead Stockpile Dust Suppress	Crushed Ore Reclaim	Total Ore to Mill Feed Conveyor	Quicklime Addition to Mill Feed	Feed to Mill from Feed Conveyor
Solids	101	214		188	188	0.07	188
% Solids	%w/w	95.0%		95.0%	95.0%	100%	95.0%
Solids SG		2.68	r 1	2.68	2.68	3.30	2.68
Solution	5h	51	10	10	10	0.00	10
Solution SG		1,00	1.00	1.00	1.00	1.00	1.00
Total Stream	\$h	225	10	197	197	0.07	197
Volumetric Flow	m ³ /h	1000 C 1000	10			1	1.1254
Slurry SG			1.00				

1) Dust suppression water addition and evaporation assumed to result in no net moisture gain.

Stease Name		New Milling	Cuelona	Total Mill	ALC: PUBLICAN	8.600	A REPORT OF LAND AND A	0 M 10 M	6.637	A 810 570 5 5 5 5	and the second s	C		12 1
arean wante		Circuit Feed	U/Flow	Feed	Water	Discharge	Sprays	Trommel Oversize	Trommel Undersize	Dilution	Feed Pump Gland Water	Feed	Overflow	Underflow
Solids	t/h	188	750	938		938	1	0	938			938	188	750
% Solids	%w/w	95.0%	74.0%	77.4%		75.0%			73.8%			66.0%	46.0%	74.0%
Solids SG	1000	2.68	2.68	2.68	~ ~	2.68	1.20		2.68			2.68	2.68	2.68
Solution	th	9.9	264	273	39	313	20	0	333	149	2.0	484	220	264
Solution SG		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1,00	1.00	1.00
Total Stream	t/h	197	1,014	1,211	39	1,250	20		1,270	149	2	1,421	408	1.014
Volumetric Flow	m ³ /h		543	623	39	662	20		682	149	2.0	833	290	543
Slumy SG			1.87	1.94	1.00	1.89	1.00		1.86	1.00	1.00	1.71	1.41	1.87
													Regire Load	400%

Trash Screening

Stream Name		Cyclone Overflow	Trash Screen Feed	Trash Screen Spray Water	Trash Screen Oversize	Total Trash Screen Underflow
Solids	1/10	188	188		0.0	188
% Solids	%w/w	46.0%	46.0%		85.0%	44.9%
Solids SG	110300	2.68	2.68		2.68	2.68
Solution	th	220	220	10	0.0	230
Solution SG		1.00	1.00	1.00	1.00	1.00
Total Stream	t/h	408	408	10	0.0	418
Volumetric Flow	m ³ /h	290	290	10	0.0	300
Slurry SG		1.41	1.41	1.00	0.0	1.39

CIL

Stream Name		Trash Screen Underflow to CIL	Cyanide Addition	Loaded Carbon Spray Water	Dilution Streams - Elution & Regen	Plant Washdown Water	Regenerated Carbon Quench Water	Carbon Sizing Screen Sprays	Carbon Safety Screen Feed	Carbon Safety Screen Sprays	Carbon Safety Screen Undersize	Total CIL Tails (Avg)
Solids % Solids	t/h %w/w	188 44.9%							188 43.6%		188 42.6%	188 42.6%
Solids SG	1.1000	2.68	2423	2.5	2.25		11.00		2.68		2.68	2.68
Solution	1/11	230	0.24	2	2.4	0	2.5	5	242	10	252	252
Solution SG	1	1.00	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Total Stream	5/5	417.6	0.24	2	2	0	3	5	430	10	440	440
Volumetric Flow	m ³ /h	300.1	0.22	2	2	0	3	6	312	10	322	322
Slurry SG		1.39	1,10	1.00	1.00	0.00	1,00	1.00	1,38	1.00	1.36	1.36

Cyanide Destruction & Tails Pumping

Stream Name		Total Cyanide Destruct Tank Feed	SMBS Addition	CuSO4 Addition	NaOH Addition	Cyanide Destruct Discharge	Misc. Streams to Tails Hopper	Dilution Streams - Acid Wash Taile	Tails Hopper Feed	Tails D/C Pump Gland Water	Tailings to TSF
Solids % Solids Solids SG	t/h %w/w	188 42.6% 2.68				188 42.3% 2.68			188 42.1% 2.68		188 42.0% 2.68
Solution Solution SG	Uh.	252 1.00	1.60	0.86	0.69	255	0	2.5	258 1.00	1.5	259
Total Stream	t/h	440	1,60	0.86	0.69	443	O	2.5	445	1.5	447
Volumetric Flow Slurry SG	m3/h	322 1.36	1.51	0.77	0.64	325 1.36	0.0	2.5	328	1.5	329

Water

Stream Name		Total Process Water Not into Slurry	Water Streams	Reagents - Water into Slurry	Process Water Spray Streams	Process Water Dilution Streams	CiL - Raw Water into Slurry
Solids % Solids Solids SG	th %w/w						
Solution Solution SG	th	15 1.00	230 1.0	3,1 1.00	42 1.0	188 1.0	10.9
Total Stream Volumetric Flow Sturry SG	th m³/h	15 15 1.00	230 230 1.00	3.1 3.1 1.00	42 42 1.00	188 188	11 11 1.00

1953-000-PRPDC-0001_B Mass Bai Primary 23/08/2016

Lycopodium

STUDY UPDATE

TULU KAPI GOLD PROJECT

APPENDIX 6.2

EQUIPMENT LIST

KEFI MINERALS ETHIOPIA PLC

TULU KAPI GOLD PROJECT

MECHANICAL EQUIPMENT AND BUILDING LISTS

1953-000-MELST-0001

September 2016

Prepared by:

Lycopodium

		CLIENT APPROVED
· (Doy	A BR	PROJECT APPROVED
lla	(V BR	DESIGN APPROVED
X	BS	BV
RE-ISSUED FOR FEED	ISSUED FOR FEED	DESCRIPTION OF REVISION
28-7-16	07.09.16	DATE
1	0	REV NO.

Lycopodium Minerals Pty Ltd ABN: 34 055 880 209 Level 5, 1 Adelaide Terrace, East Perth Western Australia 6004

This document is the property of Lycopodium Meenals Pry Ltd. it must not be copied or reproduced in any way or transmitted on to any third party without written autionity from Lycopodium Minerals Pry Ltd.

Plant Area	Equipment No.	Tot Qty	S/By Qty	Equipment Name	Mati of Constr. (incl. Lining)	Process Duty Point	Notes/Comments	Fixed/ Variable Speed	kW Inst.	kW Total
AREA 120 / F	ACILITY 121 - PRIM	MARY C	RUSHI	NG						
120	121-SC-001	1	0	STATIC GRIZZLY			700 X 700 mm aperture, MS bisalloy lined			
120	121-BN-001	1	0	ROM BIN	Mild Steel (12 mm bisalloy lined)	192 tonnes live capacity	MS bisalloy lined			
120	121-ZM-001	1	0	ROM BIN HUNGRY BOARDS	Mild Steel (12 mm bisalloy lined)		MS bisalloy lined			
120	121-ZM-006	1	0	ROM BIN SPRAY MANIFOLD	}					
120	121-CH-001	1	0	PRIMARY FEEDER FEED CHUTE	Mild Steel (12 mm bisalloy lined)		MS bisalloy lined			
120	121-FE-001	1	0	PRIMARY APRON FEEDER	Manufacturers Standard	255 tph wet	1200 mm wide x 9 m long x 2.3 m lift apron type feeder c/w electromechanical drive	Variable	30.0	30.0
120	121-ZM-002	1	0	PRIMARY FEEDER LUBRICATION SYSTEM	Manufacturers Standard		c/w grease pump. Part of primary apron feeder	Feeder		
120	121-CH-002	1	0	PRIMARY FEEDER DRIBBLE CHUTE			MS bisalloy lined			
120	121-CH-003	1	0		Mild Steel (12 mm bisallov lined)		MS hisallov lined			
							1.4 m wide x 4.8 m long stenned grizzly screen with			
120	121-SC-002	1	0	VIBRATING GRIZZLY	Manufacturers Standard	243 tph dry	150 mm spacing's	Fixed	22.0	22.0
120	121-CH-004	1	0	VIBRATING GRIZZLY U/S CHUTE	Mild Steel (12 mm bisalloy lined)		MS bisalloy lined			
120	121-CH-005	1	0	PRIMARY CRUSHER FEED CHUTE	Mild Steel (12 mm bisalloy lined)		MS bisalloy lined			
120	121-CR-001	1	0	PRIMARY CRUSHER	Manufacturers Standard	243 tph dry	unit, centralised automatic lubrication system, 132	Fixed	160.0	160.0
120	121-ZM-007	1	0	VIBRATING GRIZZLY DRIVE SUPPORT FRAME						
120	121-ZM-003	1	0	PRIMARY CRUSHER HYDRAULIC POWER UNIT	Manufacturers Standard		Hydraulic power pack c/w pumps, fans	Fixed	2.2+1.5	3.7
120	121-ZM-004	1	0	PRIMARY CRUSHER LIQUID RESISTANCE STARTER (LRS)	Manufacturers Standard		LRS			
							Automatic lubrication device for eccentric shaft			
120	121-ZM-005	1	0	PRIMARY CRUSHER AUTOMATIC LUBRICATION UNIT	Manufacturers Standard		dispensing unit, distributor and all necessary hoses.	Feeder	0.6	0.6
120	121-CH-006	1	0	PRIMARY CRUSHER DISCHARGE CHUTE	Mild Steel (12 mm bisalloy lined)		Part of Fire Protection Pump skid.			
120	121-CN-001	1	0	PRIMARY CRUSHER MAINTENANCE HOIST	Manufacturers Standard		Direct coupled diesel driven, c/w diesel engine. 5 t capacity, dual speed electric wire rope hoist and	Feeder	30.0	30.0
				<u>,</u>			travel c/w 6/0.25 kW drive.			
120	121-CV-001	1	0	CV-001 PRIMARY CRUSHER DISCHARGE CONVEYOR		255 tph wet	scrapers, plough and take-up	Fixed	30.0	30.0
120	121-WE-001	1	0	CV001 WEIGHTOMETER	Manufacturers Standard	0-600tph	c/w weigh frame, load cell local and remote			
120	121-CH-007	1	0	CV001 HEAD CHUTE	Mild Steel (12 mm bisalloy lined)		MS bisalloy lined			
				· · · · · · · · · · · · · · · · · · ·						
AREA 120 / F	ACILITY 125 - ORE	STOR	AGE		۶		1	:		L
		{		1	}	[c/w drive quards belt pullevs skirts idlers			
120	125-CV-002	1	0	CV-002 STOCKPILE FEED CONVEYOR		255 tph wet	scrapers, plough and take-up	Fixed	30.0	30.0
120	125-CH-001	1	0	CV002 HEAD CHUTE	Mild Steel (12 mm bisalloy lined)					
120	125-ZM-001	1	0	CV002 SPRAY MANIFOLD						
120	125-CH-002	1	0	SURGE BIN OVERFLOW CHUTE	Mild Steel (12 mm bisalloy lined)					
AREA 130 / F	ACILITY 131 - REC	LAIM								
130	131-BN-001	1	0	SURGE BIN	Mild Steel (12 mm bisalloy lined)					
130	131-FE-001	1	0	RECLAIM APRON FEEDER	Manufacturers Standard	224 tph wet	c/w electro-mechanical drive, Cat SALT D4 chain	Variable	18.5	18.5
130	131-ZM-001	1	0	RECLAIM FEEDER LUBRICATION SYSTEM	Manufacturers Standard			Feeder		
130	131-CH-001	1	0	RECLAIM FEEDER DRIBBLE CHUTE	Mild Steel (12 mm bisalloy lined)					
130	131-CH-002	1	0	RECLAIM FEEDER HEAD CHUTE	Mild Steel (12 mm bisalloy lined)					
							c/w drive quards belt pullevs skirts idlers			
130	131-CV-003	1	0	CV-003 MILL FEED CONVEYOR		224 tph wet	scrapers, plough and take-up	Fixed	30.0	30.0
130	131-WE-001	1	0	MILL FEED WEIGHTOMETER	Manufacturers Standard	0-600tph	c/w tachometer assembly, weigh frame, 2 idlers on weigh frame, 2 idlers as lead in, 2 idlers as lead out,			
		{					calibration masses, and electrical enclosure			
130	131-CH-003	1	0	MILL FEED CONVEYOR HEAD CHUTE	Mild Steel (12 mm bisalloy lined)					
		{	i	<u> </u>	}					
AREA 130 / F	ACILITY 132 - GRI	NDING			,					
130	132-CH-001	1	0	SAG MILL FEED SPOUT CHUTE	Mild Steel (20 mm bisalloy lined)		part of SAG Mill package			
130	132-ZM-001	1	0	SAG MILL FEED SPOUT	Manufacturers Standard		part of SAG Mill package			
130	132-BX-001	1	0	SAG MILL CYCLONE UNDERFLOW RETURN BOX	lined)		-	ļ		
130	132-ML-001	1	0	SAG MILL	Manufacturers Standard	224 tph wet	Incl ancillaries and inching drive for maintenance,			
130	132-ZM-002	1	0	SAG MILL MOTOR	Manufacturers Standard		part of SAG Mill package	<u> </u>	4,500.0	4,500.0
130	132-ZM-014	1	0	SAG MILL MOTOR SPACE HEATER	Manufacturers Standard		part of SAG Mill package	Feeder	0.8	0.8
130	132-ZM-003	1	0	SAG MILL MOTOR BEARING LUBRICATION SYSTEM	Manufacturers Standard		part of SAG Mill package	<u> </u>		
130	132-PP-001	1	0	SAG MILL MOTOR BEARING LUBRICATION PUMP 1	Manufacturers Standard	+	part of SAG Mill package	Fixed	2.2	2.2
130	132-PP-002	1	1	SAG MILL MOTOR BEARING LUBRICATION PUMP 2	Manufacturers Standard		part of SAG Mill package	Fixed	2.2	
130	132-ZM-004	4	0	SAG MILL MAIN BEARING HOUSING LUBRICATION OIL HEATER	Manufacturers Standard		part of SAG Mill package	Feeder	1.5	6.0
130	132.7M.005				Manufacturere Standard		nart of SAG Mill nackage	Fixed	00.0	00.0
130	132-7M-045	<u> </u>			Manufacturere Standard		nart of SAG Mill nackage	Fixed	03	0.0
130	132-ZIVI-U15	·			Manufacturers Standard		perior of one will package	- iXed	0.3	U.3
130	132-∠M-006	1	U		manuracturers standard		part of SAG Mill package	Thus 1		
130	132-PP-003	1	0	SAG MILL I KUNNION BEARING LUBRICATION OIL PUMP 1	manutacturers Standard	l	part of SAG Mill package	rixed	30.0	30.0

		Tot	S/By		Matl of Constr			Fixed/	kW.	kW/
Plant Area	Equipment No.	Qty	Qty	Equipment Name	(incl. Lining)	Process Duty Point	Notes/Comments	Variable Speed	Inst.	Total
130	132-PP-004	1	1	SAG MILL TRUNNION BEARING LUBRICATION OIL PUMP 2	Manufacturers Standard		part of SAG Mill package	Fixed	30.0	
130	132-PP-012	1	1	SAG MILL TRUNNION BEARING LUBRICATION OIL PUMP 3	Manufacturers Standard		part of SAG Mill package	Fixed	30.0	
130	132-PP-006	1	0	SAG MILL TRUNNION BEARING LUBRICATION OIL RECIRCULATION	Manufacturers Standard		part of SAG Mill package	Fixed	15.0	15.0
130	132-PP-007	1	1	SAG MILL TRUNNION BEARING LUBRICATION OIL RECIRCULATION	Manufacturers Standard		part of SAG Mill package	Fixed	15.0	<u> </u>
130	132-ZM-007	5	0	PUMP 2 SAG MILL TRUNNION BEARING LUBRICATION IMMERSION BAR	Manufacturers Standard		part of SAG Mill package	Feeder	1.5	7.5
130	132.7M.008		0		Manufacturare Standard		part of SAG Mill package			
130	132-210-000	<u> </u>								
130	132-PP-008	<u> </u>		SAG MILL REDUCER/ PINION BEARING LUBRICATION PUMP 1	Manufacturers Standard		part of SAG Mill package	Fixed	18.5	18.5
130	132-PP-009	1	1	SAG MILL REDUCER/ PINION BEARING LUBRICATION PUMP 2	Manufacturers Standard		part of SAG Mill package	Fixed	18.5	ļ
130	132-ZM-009	6	0	BAR HEATER	Manufacturers Standard		part of SAG Mill package	Feeder	1.5	9.0
130	132-ZM-010	1	0	SAG MILL LINER HANDLER	Manufacturers Standard		c/w hydraulic power pack.	Feeder	30.0	30.0
130	132-ZM-012	1	0	SAG MILL THUNDERBOLT	Manufacturers Standard					
130	132-ZM-011	1	0	SAG MILL GUARDS			-			
130	132-CH-002	1	0	SAG MILL DISCHARGE CHUTE	Mild Steel (12 mm nat. rubber		-			
130	132-LA-001	1	0	SAG MILL DISCHARGE LAUNDER	Mild Steel (12 mm nat. rubber					
130	132-CH-003	1		SAG MILL TROMMEL COVER	(lined) Mild Steel (enoxy painted)			<u> </u>		<u> </u>
400	400 UD 004				Mild Steel (12 mm nat. rubber					
130	132-HP-001	{			lined)		-			
130	132-CH-007	1	0	SAG MILL FEED END CLEANUP CHUTE	Mild Steel		c/w grate cover			
130	132-CH-008	1	0	SAG MILL TROMMEL UNDERSIZE CHUTE	lined)		-	<u> </u>		ļ
130	132-PP-010	1	0	MILLING AREA SUMP PUMP 1	Manufacturers Standard	65 m3/h @ 20m TDH, Slurry SG 1.2	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly	Fixed	15.0	15.0
130	132-CN-002	1	0	MILLING AREA DRIVE IN SUMP HOIST	Manufacturers Standard		Manual chain hoist			
		[}					
AREA 130 / F	ACILITY 133 - CLA	SSIFIC	ATION (CYCLONES)	····		·····	1		t
		{			High Chrome Cast Iron Impeller		All metal construction heavy duty slurry pump c/w			[
130	133-PP-001	1	0	CYCLONE FEED PUMP 1	and Casing	1126 m3/h @ 32 m TDH	direct drive arrangement, drive guard and motor, 3.5 m3/h gland water	Variable	250.0	250.0
		(High Chrome Cast Iron Impeller		All metal construction heavy duty slurry pump c/w			
130	133-PP-002	1		CYCLONE FEED POMP 2	and Casing	1126 m3/n @ 32 m TDH	m3/h gland water	variable	250.0	
		[712 m3/hr capacity 63% w/w	14 cluster made of 11 operating, 3 standby			
130	133-CS-001	1	0	CYCLONE CLUSTER	Manufacturers Standard	solids, S.G 1.66	valves, lockable 12mm FRP launder covers, access			
130	133.1 A.001	1	0		Mild Steel (rubber lined)		platform			
120	122 A 002				Mild Steel (subber lined)		part of Cualena Cluster peakage			
130	133-LA-002	<u> </u>		CTCLONE O/F LAUNDER	Mild Steel (rubber lined)		part of Cyclone Cluster package	<u> </u>		<u> </u>
130	133-CN-001	1	0	CYCLONE AREA DAVIT CRANE	Manufacturers Standard		-	Feeder	5.5	5.5
		<u>}</u>	!		{					<u> </u>
AREA 130 / F	ACILITY 134 - GRA	VITY C	ONCEN	ITRATION						
		[
AREA 130 / F	ACILITY 136 - REC	YCLE	CRUSHI	NG						
		{								
AREA 140 / F	ACILITY 141- TRAS	SH SCR	EENING	3				•••••		,
140	141-BX-001	1	0	TRASH SCREEN FEED BOX	Mild Steel (6 mm nat. rubber		-			
140	141-SC-001	1	0	TRASH SCREEN	Manufacturers Standard	338 m3/h @ 46% w/w solids	Polvurethane deck material c/w isolation frame	Fixed	2 x 9	18.0
140	141-CH-001	1	0	TRASH SCREEN O/S CHUTE	Mild Steel					
	444 011 000	<u>. </u>	-		Mild Steel (6 mm nat. rubber					
140	141-GH-002	}		IRASH SCREEN U/S CHUTE	lined)		-			
140	141-BN-001	1	0	I KASH BIN	Mild Steel					
		{		l	}					
AREA 140 / F	ACILITY 142- FEED		ENING		,	,				
					{					
AREA 160 / F	ACILITY 162- CIL									
160	162-BX-001	1	0	CIL FEED DISTRIBUTION BOX	Mild Steel (6 mm nat. rubber lined)	-	-			
160	162-TK-001	1	0	CIL TANK 1	Mild Steel	1600 m3 live capacity	Bolted construction, 3 baffles,	ĺ		
160	162 AC 001	·			Manufaaturara Standard	Solid suspension and gas	Carbon steel shaft with rubber encapsulated	Fixed	75.0	75.0
100	102-AG-001	ļ				dispersion of 440 Nm3/hr	impellers. Double.stane.innalien. Doumsbaft.air.enamion	FIXED	75.0	75.0
160	162-SC-001	1	0	CIL TANK 1 INTERTANK SCREEN	Manufacturers Standard	338 m3/h @ 46% w/w solids	SEW KHF107 Drive Unit and WEG Motor	Fixed	4.0	4.0
160	162-LA-001	1	0	CIL TANK 1 DISCHARGE LAUNDER	Mild Steel	-	-			
400	100 00 001				High Chrome Cast Iron Impeller	100 m3/h @ 8m TDH, Slurry	c/w drive guard, CV drive configuration, fixed speed	Elward		44.0
160	102-PP-001	1	υ	UL TANK I LAKBUN KEGUVEKY PUMP	and Casing	SG 1.48, Carbon Concentration	vee-belt drive assembly. Fixed mounting. Recessed	rixed	11.0	11.0
160	162-TK-002	1	0	CIL TANK 2	Mild Steel	1600 m3 live capacity	Bolted construction, 3 baffles, 0.7 m freeboard			
		<u>}</u>	÷		<u>}</u>	Solid suspension and app	Carbon steel shaft with rubber encapsulated	 		
160	162-AG-002	1	0	CIL TANK 2 AGITATOR	Manufacturers Standard	dispersion of 330 Nm3/hr	impellers. Double stage impellers, Downshaft air sparning	Fixed	75.0	75.0
160	162-SC-002	1	0	CIL TANK 2 INTERTANK SCREEN	Manufacturers Standard	338 m3/h @ 46% w/w solids	Wedgewire, 304 SS, 833 microns aperture, c/w	Fixed	4.0	4.0
			ļ	 			DEVV KHH107 Unive Unit and WEG Motor	<u> </u>		<u> </u>
160	162-LA-002	1	0	CIL TANK 2 DISCHARGE LAUNDER	Mild Steel	-	1-	[]

Plant Area	Equipment No.	Tot Qty	S/By Qty	Equipment Name	Matl of Constr. (incl. Lining)	Process Duty Point	Notes/Comments	Fixed/ Variable Speed	kW Inst.	kW Total
160	162-LA-003	1	0	CIL TANK 2 BYPASS LAUNDER	Mild Steel					
160	162-PP-002	1	0	CIL TANK 2 CARBON RECOVERY PUMP	High Chrome Cast Iron Impeller and Casing	100 m3/h @ 8m TDH, Slurry SG 1.48, Carbon Concentration 15 g/L	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Fixed mounting. Recessed impeller.	Fixed	11.0	11.0
160	162-TK-003	1	0	CIL TANK 3	Mild Steel	1600 m3 live capacity	Bolted construction, 3 baffles, 0.7 m freeboard			
160	162-AG-003	1	0	CIL TANK 3 AGITATOR	Manufacturers Standard	Solid suspension and gas dispersion of 220 Nm3/hr	Carbon steel shaft with rubber encapsulated impellers. Double stage impellers. Downshaft air sparging.	Fixed	75.0	75.0
160	162-SC-003	1	0	CIL TANK 3 INTERTANK SCREEN	Manufacturers Standard	338 m3/h @ 46% w/w solids	Wedgewire, 304 SS, 833 microns aperture, c/w SEW KHF107 Drive Unit and WEG Motor	Fixed	4.0	4.0
160	162-LA-004	1	0	CIL TANK 3 DISCHARGE LAUNDER	Mild Steel	-	-			
160	162-LA-005	1	0	CIL TANK 3 BYPASS LAUNDER	Mild Steel					
160	162-PP-003	1	0	CIL TANK 3 CARBON ADVANCE PUMP	High Chrome Cast Iron Impeller and Casing	100 m3/h @ 8m TDH, Slurry SG 1.48, Carbon Concentration 15 g/L	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Fixed mounting. Recessed impeller.	Fixed	11.0	11.0
160	162-TK-004	1	0	CIL TANK 4	Mild Steel	1600 m3 live capacity	Bolted construction, 3 baffles, 0.7 m freeboard			
160	162-AG-004	1	0	CIL TANK 4 AGITATOR	Manufacturers Standard	Solid suspension and gas dispersion of 220 Nm3/hr	Carbon steel shaft with rubber encapsulated impellers. Double stage impellers . Dowoshaft air sparging	Fixed	75.0	75.0
160	162-SC-004	1	0	CIL TANK 4 INTERTANK SCREEN	Manufacturers Standard	338 m3/h @ 46% w/w solids	Wedgewire, 304 SS, 833 microns aperture, c/w SEW KHF107 Drive Unit and WEG Motor	Fixed	4.0	4.0
160	162-LA-006	1	0	CIL TANK 4 DISCHARGE LAUNDER	Mild Steel	-	-			
160	162-LA-007	1	0	CIL TANK 4 BYPASS LAUNDER	Mild Steel					
160	162-PP-004	1	0	CIL TANK 4 CARBON ADVANCE PUMP	High Chrome Cast Iron Impeller and Casing	100 m3/h @ 8m TDH, Slurry SG 1.48, Carbon Concentration 15.cl	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Fixed mounting. Recessed immeller.	Fixed	11.0	11.0
160	162-TK-005	1	0	CIL TANK 5	Mild Steel	1600 m3 live capacity	Bolted construction, 3 baffles, 0.7 m freeboard			
160	162-AG-005	1	0	CIL TANK 5 AGITATOR	Manufacturers Standard	Solid suspension and gas dispersion of 220 Nm3/hr	Carbon steel shaft with rubber encapsulated impellers. Double stage impellers . Nownshaft air sparning	Fixed	75.0	75.0
160	162-SC-005	1	0	CIL TANK 5 INTERTANK SCREEN	Manufacturers Standard	338 m3/h @ 46% w/w solids	Wedgewire, 304 SS, 833 microns aperture, c/w SEW KHF107 Drive Unit and WEG Motor	Fixed	4.0	4.0
160	162-LA-008	1	0	CIL TANK 5 DISCHARGE LAUNDER	Mild Steel	-	-			
160	162-LA-009	1	0	CIL TANK 5 BYPASS LAUNDER	Mild Steel					
160	162-PP-005	1	0	CIL TANK 5 CARBON ADVANCE PUMP	High Chrome Cast Iron Impeller and Casing	100 m3/h @ 8m TDH, Slurry SG 1.48, Carbon Concentration 15 g/L	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Fixed mounting. Recessed impeller.	Fixed	11.0	11.0
160	162-TK-006	1	0	CIL TANK 6	Mild Steel	1600 m3 live capacity	Bolted construction, 3 baffles, 0.7 m freeboard			
160	162-AG-006	1	0	CIL TANK 6 AGITATOR	Manufacturers Standard	Solid suspension and gas dispersion of 220 Nm3/hr	Carbon steel shaft with rubber encapsulated impellers. Double stage impellers. Downshaft air sparging.	Fixed	75.0	75.0
160	162-SC-006	1	0	CIL TANK 6 INTERTANK SCREEN	Manufacturers Standard	338 m3/h @ 46% w/w solids	Wedgewire, 304 SS, 833 microns aperture, c/w SEW KHF107 Drive Unit and WEG Motor	Fixed	4.0	4.0
160	162-LA-010	1	0	CIL TANK 6 DISCHARGE LAUNDER	Mild Steel	-	-			
160	162-LA-011	1	0	CIL TANK 6 BYPASS LAUNDER	Mild Steel					
160	162-LA-012	1	0	CIL DISCHARGE LAUNDER	Mild Steel					
160	162-PP-006	1	0	CIL TANK 6 CARBON ADVANCE PUMP	High Chrome Cast Iron Impeller and Casing	100 m3/h @ 8m TDH, Slurry SG 1.48, Carbon Concentration	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Fixed mounting. Recessed	Fixed	11.0	11.0
160	162-CN-001	1	0	CIL AREA GANTRY CRANE	Manufacturers Standard	7.5 t capacity , 16 m span, 42 m	c/w siren	Feeder	34.6	34.6
160	162-PP-007	1	0	CIL AREA SUMP PUMP 1	Rubber lined casing Metal Impeller	65 m3/h @ 20m TDH, Slurry SG 1.2	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Pump hung from hoist.	Fixed	15.0	15.0
160	162-PP-008	1	0	CIL AREA SUMP PUMP 2	Rubber lined casing Metal Impeller	65 m3/h @ 20m TDH, Slurry SG 1.2	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Pump hung from hoist.	Fixed	15.0	15.0
160	162-CN-002	1	0	CIL AREA SUMP PUMP HOIST 1	Manufacturers Standard		Manual chain hoist			
160	162-CN-002	1	0		Manufacturere Standard		Manual chain hoist			
100	102-014-003						Wedgewire, 304 SS, 833 microns aperture, c/w			
160	162-SC-007	1	1	CIL INTERTANK SCREEN - SPARE	Manufacturers Standard	338 m3/h @ 46% w/w solids	SEW KHF107 Drive Unit and WEG Motor -	Fixed	4.0	
160	162-ZM-001	1	0	CIL HIGH PRESSURE CLEANER	Manufacturers Standard	TDH	32A outlet	<u> </u>		
					[<u> </u>		
AREA 170 / F.	ACILITY 171- CARE	BON RE	COVER	Y	1			;		
170	171-BX-001	1	0	LOADED CARBON RECOVERY SCREEN FEED BOX	Mild Steel (6 mm nat. rubber lined)	-	-			
170	171-SC-001	1	0	LOADED CARBON RECOVERY SCREEN	Manufacturers Standard	100 m3/h total flow rate	Polyurethane deck material c/w isolation frame and spray bars	Fixed	2 x 1.1	2.2
170	171-CH-001	1	0	LOADED CARBON RECOVERY SCREEN O/S CHUTE	Mild Steel (6 mm nat. rubber lined)	-	-	ļ		
170	171-CH-002	1	0	LOADED CARBON RECOVERY SCREEN U/S CHUTE	Mild Steel (6 mm nat. rubber lined)	-				
					1					
AREA 170 / F.	ACILITY 172- ACID	WASH			,					
170	172-CM-001	1	0	ACID WASH COLUMN	Mild Steel (rubber lined)	6 tonne carbon/ strip	Boiler plate construction per AS1210 c/w butyl rubber lining and all appurtenances.			
170	172-FL-001	1	0	ACID WASH FILTER 1	Various	-	PVC or SS construction c/w 316 SS 250 µm insertion baskets.			
170	172-FL-002	1	0	ACID WASH FILTER 2	Various	-	PVC or SS construction c/w 316 SS 250 µm insertion baskets.			
170	172-ZM-001	1	0	ACID WASH FILTERS DRIP TRAY	SS304L	-	-			
AREA 170 / F.	ACILITY 173- ELUT	ION								

Plant Area	Equipment No.	Tot Qty	S/By Qty	Equipment Name	Mati of Constr. (incl. Lining)	Process Duty Point	Notes/Comments	Fixed/ Variable Speed	kW Inst.	kW Total
170	173-CM-001	1	0	ELUTION COLUMN	SS304L	6 tonne carbon/ strip	Grade 304L stainless steel construction per			
170	173-FL-001	1	0	ELUATE FILTER 1	SS304	-	Grade 304 stainless steel construction c/w 250 µm			
170	173-FL-002	1	0	ELUATE FILTER 2	SS304	-	Grade 304 stainless steel construction c/w 250 µm			
170	173-ZM-001	1	0	ELUATE FILTERS DRIP TRAY	SS304L	-	insertion baskets			
170	173-HX-001	1	0	STRIP SOLUTION HEATER	Various	1150 kW heating capacity	Diesel-fired thermal oil heater c/w modulating	Feeder	1.5	1.5
170	173-SX-001	1	0	ELUTION HEATER EXHAUST STACK	SS316L	-				
170	173-FL-003	1	0	STRIP SOLUTION HEATER DIESEL FUEL FILTER 1	Manufacturers Standard	-	Part of Strip Solution Heater Vendor Package			
170	173-FL-004	1	0	STRIP SOLUTION HEATER DIESEL FUEL FILTER 2	Manufacturers Standard	-	Part of Strip Solution Heater Vendor Package			
170	173-HX-002	1	0	STRIP SOLUTION HEATER PRIMARY HEAT EXCHANGER	SS316	-	Part of Strip Solution Heater Vendor package.			
							Part of Strip Solution Heater Vendor package.			
170	173-HX-003	1	0	STRIP SOLUTION HEATER HEAT RECOVERY HEAT EXCHANGER	SS316	-	Plate type c/w grade 316 stainless steel plates and	ļ		į
170	173-PP-001	1	0	THERMAL OIL CIRCULATION PUMP	Manufacturers Standard	-	Part of Strip Solution Heater Vendor Package	Fixed	7.5	7.5
170	173-TK-001	1	0	THERMAL HEATER EXPANSION TANK	Mild Steel	-	Part of Strip Solution Heater Vendor Package			
170	173-PP-002	1	0	SULPHAMIC ACID PUMP	Manufacturers Standard	2.4m3/h, 25m TDH	Hose Pump, EPDM hose	Fixed	1.5	1.5
170	173-TK-002	1	0	STRIP SOLUTION TANK	SS304L	17 m3 live capacity	Mild steel construction c/w insulation and cladding.			
170	173 PP 003	1	0		Manufacturere Standard	48 m3/b 105m TDH SG 1.05	Centrifugal pump c/w direct coupled motor, flexible	Variable	22.0	22.0
		}					coupling, guard, base-metal free seals and rigid	Variable	22.0	
170	173-PP-004	1	0	STRIPPING WATER ANTISCALANT PUMP	PVDF	-	-	Fixed	0.1	0.1
170	173-PP-005	1	0	ELUTION SUMP PUMP	Rubber lined casing Metal Impeller	22 m3/h @ 28m TDH, Slurry SG 1.0	c/w drive guard, CV drive configuration, fixed speed vee-belt drive assembly. Pump hung from hoist.	Fixed	7.5	7.5
AREA 170 / F	ACILITY 174- CAR	BON RE	GENER	ATION			í	í		
170	174-BX-001	1	0	CARBON DEWATERING SCREEN FEED BOX	[
170	174-SC-001	1	0	CARBON DEWATERING SCREEN	Manufacturers Standard	52 m3/h total flow rate	Part of carbon regeneration kiln package.	Fixed	1.1	1.1
170	174-CH-001	1	0	CARBON DEWATERING SCREEN O/S CHUTE						
170	174.CH-002	1								
170	174-UT-002		0		Mild Steel	At carbon canacity	Part of carbon regeneration kiln package			
170	174-SC-002	1	0	CARBON KII N PIPE SCREEN	Various	-	complete with support structure			
170	174-00-002		0		Manufacturara Standard		Part of carbon regeneration kills package			
170	174-HP-002	<u>.</u>			Manufacturers Standard	-	Part of carbon regeneration kiin package			
170	1/4-FA-001	1	0	CARBON KILN PRE-DRYEK FAN		0.3 t/h capacity_0.47 t/m3 bulk	Part of carbon regeneration kiln package			
170	174-FE-001	1	0	CARBON KILN SCREW FEEDER	SS304L	density, 3 mm top size	c/w VSD supplied by kiln supplier	Feeder	0.6	0.6
170	174-KN-001	1	0	CARBON REGENERATION KILN	Various	300 kg/hr, horizontal, Diesel	starters, VSD's	Feeder	3.8	3.8
170	174-DU-001	1	0	CARBON KILN FUME DUCTING				ļ		ļ
170	174-BX-002	1	0	CARBON QUENCH TANK						ļ
170	174-SC-003	1	0	CARBON SIZING SCREEN	Manufacturers Standard	-	Part of carbon regeneration kiln package	Feeder	0.6	0.6
170	174-CH-003	1	0	CARBON SIZING SCREEN O/S CHUTE						
170	174-CH-004	1	0	CARBON SIZING SCREEN U/S CHUTE						
AREA 170 / F	ACILITY 175 - INTE	INSE C	YANIDA	TION						
		}			{			[
AREA 170 / F	ACILITY 176 - ELE	CTROW	INNING	i	······	1	,	····-		
170	176-VS-001	1	0	FLASH VESSEL	SS304L	50 litre live capacity	-			
170	176-CL-001	1	0	CIL ELECTROWINNING CELL 1	SS304L	22 cathodes per cell	/	<u></u>		·
170	176-CL-002	1	0		993041	22 cathories per cell				
470	170-CE-002	<u> </u>	0		Manufactures Oberdand	2 cauloues per cer		Franka	05.0	05.0
470	170-00-001	<u> </u>	0		Manufacturers Oters	2 500 amps - 10		Fooder	30.0	05.0
1/0	176-RG-002	1	U		manuracurers standard	3,500 amps x 10 volts	[reedêr	35.0	35.0
170	176-ZM-001	1	0	ANODE LIFTING FRAME	Mild Steel	-	-	ļ		
170	176-ZM-002	1	0	ANODE HOLDING RACK	Mild Steel	-	<u> </u>	ļ	ļ	
170	176-DU-001	1	0	ELECTROWINNING CELL FUME DUCTING	SS304L	- 3 700 m3/h @ 750 Pa TSP @	-			
170	176-FA-001	1	0	ELECTROWINNING CELL FUME EXTRACTION FAN	Manufacturers Standard	70 °C	Upblast position / vee-belt driven	Fixed	2.2	2.2
170	176-SX-001	1	0	ELECTROWINNING FUME EXTRACTION STACK	SS304L	-	-			
170	176-ZM-006	1	1	CATHODE HIGH PRESSURE WASH SPRAY MACHINE	Manufacturers Standard	TDH, 1 SG		Feeder	2.2	
		L]					i
AREA 170 / F	ACILITY 177 - GOL	DROOM	1 & SMI	ELTING	,					
170	177-CN-001	1	0	GOLD ROOM CRANE	Manufacturers Standard	2 t capacity, 8.6 m span, 18 m travel, 9 m lift	}	Feeder	6.7	6.7
170	177-FA-001	1	0	GOLDROOM ROOF FAN 1	Manufacturers Standard	12,000 m3/h @ 65 Pa. TSP @ 25-45 °C	Roof Fan	Fixed	1.5	1.5
170	177-FA-002	1	0	GOLDROOM ROOF FAN 2	Manufacturers Standard	12,000 m3/h @ 65 Pa. TSP @	Roof Fan	Fixed	1.5	1.5
170	177-FA-003	1	0	GOLDROOM ROOF FAN 3	Manufacturers Standard	12,000 m3/h @ 65 Pa. TSP @	Roof Fan	Fixed	1.5	1.5
170	177-FA-004	1	0	GOLDROOM ROOF FAN 4	Manufacturers Standard	12,000 m3/h @ 65 Pa. TSP @	Roof Fan	Fixed	1.5	1.5
170	177-FL-001	1	0	CELL SLUDGE PAN FILTER	Manufacturers Standard	38 litres per batch				
170	177-ZM-001	1	n	PAN FILTER VACUUM SYSTEM	Manufacturers Standard	 -	Part of Pan Filter			
1		6 Č		·	}	1	1	1	4	i.

		Tet	C/Du		Matl of Constr			Fixed/	L/M	LW/
Plant Area	Equipment No.	Qty	Qty	Equipment Name	(incl. Lining)	Process Duty Point	Notes/Comments	Variable Speed	Inst.	Total
170	177-PP-001	1	0	PAN FILTER VACUUM PUMP	Manufacturers Standard	-	Part of Pan Filter	Fixed	4.0	4.0
170	177-TK-001	1	0		Manufacturers Standard		Part of Pan Filter			
		·····								
170	177-VS-001	1	0	PAN FILTER VACUUM PUMP PRESSURE VESSEL	Manufacturers Standard	-	Part of Pan Filter	ļ		
170	177-PP-002	1	0	GOLD ROOM SUMP PUMP	Manufacturers Standard	SG 1.1	vee-belt drive assembly. Fixed mounting.	Fixed	7.5	7.5
170	177-DR-001	1	0	DRYING OVEN	Manufacturers Standard	750 deg. C - operating temperature / 1000 deg. C - Oven Maximum Temperature	c/w tray trolley and lifting frame	Feeder	6 x 4kW	24.0
170	177-ST-001	1	0	DRYING OVEN FUME HOOD	Mild Steel	-	-			
170	177 EC 001	4	0		Manufaaturara Standard	200 ka brass sansaitu	Discal find of utiliting mashanism A200 unit	Foodor	0.6	0.6
170	177-PG-001						Diese med dw uning mechanism. A200 unit.	reedei	0.0	0.0
170	177-FL-002	1	0	BARRING FURNACE DIESEL FILTER 1	Manufacturers Standard	-	Part of Barring Furnace package	l		
170	177-FL-003	1	1	BARRING FURNACE DIESEL FILTER 2	Manufacturers Standard	-	Part of Barring Furnace package	<u></u>		
170	177-ST-002	1	0	FURNACE FUME HOOD	Mild Steel	-	-			
170	177-FA-005	1	0	FURNACE EXTRACTION FAN	Mild Steel	6,200 m3/h @ 500 Pa. TSP @	Upblast position / direct driven	Fixed	2.2	2.2
170	177-SX-001	1	0	FURNACE EXTRACTION STACK	Mild Steel	-	-			
470	477 714 000				0		Dent of Denting Frances and here	·		
170	177-ZM-002				Cast Iron	- 34 kg capacity, +/- 0.1 g	Part of Barring Purnace package	·		
170	177-ZM-003	1	0	BULLION BALANCE	Manufacturers Standard	accuracy	-	ļ		
170	177-ZM-004	1	0	FLUX SCALES	Manufacturers Standard	34 kg capacity, +/- 0.1 g accuracy	-	ļ		
170	177-ZM-005	1	0	GOLDROOM SAFE	Manufacturers Standard	0.6 m3 capacity	-			
170	177-ZM-006	1	0	VAULT DOOR	Manufacturers Standard	150 mm thick vault door	[
170	177 7M 007	4	0		Variaua					
170	177-210-007				various	-				
170	177-ZM-008	1	0	GOLDROOM EXTERNAL PERSONNEL DOOR	Various	-	-	ļ		
170	177-ZM-009	1	0	GOLDROOM INTERNAL PERSONNEL DOOR	Various	-	-			
170	177-ZM-010	1	0	PRILL BALANCE	Manufacturers Standard		-			
170	177-MO-001	1	0	GOLDROOM CCTV MONITOR	Manufacturers Standard					
170	177.04-001	1			Manufacturare Standard					
170	177-CA-002	1	0	GOLDROOM CCTV CAMERA 2	Manufacturers Standard			ļ		
170	177-CA-003	1	0	GOLDROOM CCTV CAMERA 3	Manufacturers Standard					
AREA 180 / F	ACILITY 181 - CAR	BON S	FETY	SCREENING						
180	181-BX-001	1	0	CARBON SAFETY SCREEN FEED BOX	Mild Steel (6 mm nat. rubber					
190	191.80.001	4			lined) Manufacturara Standard	252 m2/b total flow rate	Polyurethane deck material, cross flow, c/w isolation	Fixed	2×75	15.0
180	101-30-001					353 mon total now rate	frame and spray bar	FIXEU	2 X 1.5	15.0
180	181-CH-001	1	0	CARBON SAFETY SCREEN O/S CHUTE	Mild Steel			ļ		
180	181-BN-001	1	0	FINE CARBON COLLECTION BIN	Mild Steel					
180	181-CH-002	1	0	CARBON SAFETY SCREEN U/S CHUTE	Mild Steel (6 mm nat. rubber lined)					
AREA 180 / F	ACILITY 183 - DET	DXIFIC			<u>.</u>					
400	400 BY 004				Mild Steel (6 mm nat. rubber					
180	183-BX-001	1	0	CYANIDE DESTRUCTION FEED BOX	lined)		c/w isolation and weir gates			
180	183-TK-001	1	0	CYANIDE DESTRUCTION TANK 1	Mild Steel	60 mins residence @ 276 m3/h	tank, 3 baffles (5.93 High x 0.510m Width), including 1.3m freeboard. Fully welded construction			
180	183-AG-001	1	0	CYANIDE DESTRUCTION TANK 1 AGITATOR	Manufacturers Standard		Rubber encapsulated carbon steel shaft and propeller. Double stage propeller	Fixed	55.0	55.0
180	183-ZM-001	1	0	CYANIDE DESTRUCTION TANK 1 AIR SPARGER	SS316		Air sparger design by agitator vendor			
							operating volume 180 m3, Flat bottomed, agitated			
180	183-TK-002	1	0	CYANIDE DESTRUCTION TANK 2	Mild Steel	60 mins residence @ 276 m3/h	tank, 3 baffles (5.93 High x 0.510m Width), including 1.3m freeboard. Fully welded construction			
180	183-AG-002	1	0	CYANIDE DESTRUCTION TANK 2 AGITATOR	Manufacturers Standard	m3 tank capacity, single/dual stage impeller	Rubber encapsulated carbon steel shaft and propeller. Double stage propeller	Fixed	55.0	55.0
180	183-ZM-002	1	0	CYANIDE DESTRUCTION TANK 2 AIR SPARGER	SS316		Air sparger design by agitator vendor			
180	183-LA-001	1	0	CYANIDE DESTRUCTION DISCHARGE LAUNDER	Mild Steel (6 mm nat. rubber		h			
400	400 UD 000				lined) Mild Steel (6 mm nat. rubber					
180	163-HP-002	ļ		CTANIDE DESTRUCTION DISCHARGE HOPPER	lined)	65 m3/h @ 20m TDH Slurny	C/W isolation and weir gates	ļ		
180	183-PP-001	1	0	CYANIDE DESTRUCTION SUMP PUMP	Manufacturers Standard	SG 1.2	vee-belt drive assembly. Fixed mounting.	Fixed	15.0	15.0
180	183-CN-001	1	0	CYANIDE DESTRUCTION SUMP PUMP HOIST	Manufacturers Standard		Manual chain hoist			
180	183-PP-002	1	0	CYANIDE DESTRUCTION DISCHARGE PUMP 1	Manufacturers Standard	398 m3/h @ -10 m TDH, Slurry SG 1.37	Heavy duty slurry pump c/w vee-belt drive arrangement, drive guard and motor	Variable	90.0	90.0
180	183-PP-003	1	1	CYANIDE DESTRUCTION DISCHARGE PUMP 2	Manufacturers Standard	398 m3/h @ -10 m TDH, Slurry SG 1.37	Heavy duty slurry pump c/w vee-belt drive arrangement, drive guard and motor	Variable	90.0	
180	183-SA-001	1	0	CYANIDE DESTRUCTION DISCHARGE SAMPLER	Manufacturers Standard					
AREA 240 / 5				L	l		i	·		
AREA 210/F	AGILIT 1 211 - GYA	NDE		· · · · · · · · · · · · · · · · · · ·	1	2 t capacity 12 m travel 10 m				
210	211-CN-001	1	0	CYANIDE HOIST	Manufacturers Standard	lift	-	Feeder	5.6	5.6
210	211-ST-001	1	0	CYANIDE BULK BAG LIFTING FRAME	Mild Steel	2 tonne	c/w 2 tonne lifting lug			
210	211-ZM-001	1	0	CYANIDE BAG BREAKER	Mild Steel	-	-	Г П		
210	211-TK-001	1	0	CYANIDE MIXING TANK	Mild Steel	15m3 live capacity	0.3 m freeboard			
210	211-AG-001	1	0	CYANIDE MIXING TANK AGITATOR	Manufacturers Standard	Mixing	Grade 316 stainless steel shaft and propeller. Single	Fixed	1.1	1.1
1					5	-	stage propeller	t - 1		

		Tet	C/Du		Moti of Constr			Fixed/	k)M/	LAN
Plant Area	Equipment No.	Qty	Qty	Equipment Name	(incl. Lining)	Process Duty Point	Notes/Comments	Variable Speed	Inst.	Total
210	211-PP-001	1	0	CYANIDE TRANSFER PUMP	Manufacturers Standard	15 m3/hr capacity, 5 m TDH,	Centrifugal pump c/w direct coupled motor, flexible	Fixed	1.1	1.1
						1.18 SG	coupling, guaro, base-metal free seals and rigid			
210	211-TK-002	1	0	CYANIDE STORAGE TANK	Mild Steel	25 m3 live capacity	0.5 m freeboard			
210	211-PP-002	1	0	CYANIDE CIRCULATION PUMP 1	Manufacturers Standard	10 m3/hr capacity, 23 m TDH, 1.1 SG	coupling, guard, base-metal free seals and rigid	Fixed	1.5	1.5
210	211-PP-003	1	1	CYANIDE CIRCULATION PUMP 2	Manufacturers Standard	10 m3/hr capacity, 23 m TDH,	Centrifugal pump c/w direct coupled motor, flexible	Fixed	1.5	
	044 DD 004				New feetures Oberdand	1 m3/hr capacity, 20 m TDH,	4 pole motor, Direct Coupled. Grade 316 stainless	Place d		
210	211-PP-004				Manufacturers Standard	1.10 SG 22 m3/h @ 20m TDH_Slurry	steel rotor and EPDM stator c/w drive guard. CV drive configuration fixed speed	Fixed	1.1	1.1
210	211-PP-005	1	0	CYANIDE AREA SUMP PUMP	Manufacturers Standard	SG 1.0	vee-belt drive assembly. Fixed mounting.	Fixed	7.5	7.5
				[ļ
AREA 210 / F	ACILITY 212 - LIME									
210	212-BN-001	1	0	LIME SILO	Mild Steel	11 tonne live capacity	5t storage, 2.4 dia x 2.4 high wall, 60 degree cone, c/w top of bin platform and access ladder			
210	212-VB-001	1	0	LIME SILO BIN ACTIVATOR	Manufacturers Standard	40-500 kg/hr	1520mm dia x 200mm outlet	Fixed	0.4	0.4
210	212-ZM-001	1	0	LIME SILO ROTARY VALVE	Manufacturers Standard	40-500 kg/hr	Range 40-264 kg/h, 200mm inlet & outlet c/w forced	Variable	0.4	0.4
210	212-FA-001	1	0	LIME SILO ROTARY VALVE FAN	Manufacturers Standard		cooling ran	Fixed	0.4	0.4
210	212 ST-001	1	0		Mild Steel					
210	212-01-001				Mild Otoci					
210	212-ZM-002	1	0	LIME BAG BREAKER	Mild Steel	-	1.5t SWL wire rope, dual speed, 5m lift, 8m travel			
210	212-CN-001	1	0	LIME HOIST	Manufacturers Standard	2 t capacity, 5 m travel, 15 m lift	c/w festooning	Feeder	6.0	6.0
210	212-DC-001	1	0	LIME SILO DUST COLLECTOR	Manufacturers Standard	1,700 Am3/hr at 1.5 kPa	Insertable, reverse pulse, bag collector	Fixed	5.5	5.5
					{					
AREA 210 / F	ACILITY 213 - FLO	CCULA	NT							
]					
AREA 210 / F	ACILITY 214 - ACIE	0 & CAL	JSTIC		3			·		·
210	214-PP-001	1	0		Manufacturers Standard	5 m3/hr capacity, 5 m TDH,	EPDM Hose Peristaltic Pump c/w gearbox and 4	Fixed	0.0	
040	044 TK 004					1.16 SG	pole motor.		0.0	
210	214-1K-001					38 m3/hr capacity 22 m TDH	Mag drive pump_ETEE+CE casing and impeller_2			{
210	214-PP-002	1	0	HYDROCHLORIC ACID PUMP	Manufacturers Standard	1.01 SG	pole motor	Fixed	7.5	7.5
210	214-PP-003	1	0	ACID AREA SUMP PUMP	Manufacturers Standard	SG 1.0	vee-belt drive assembly. Fixed mounting.	Fixed	7.5	7.5
210	214-HP-001	1	0	CAUSTIC FEED HOPPER	SS316L	-	c/w manual rotary feeder	<u></u>		
210	214-ZM-002	1	0	CAUSTIC ROTARY VALVE	Manufacturers Standard		Manual Rotary Feeder			
210	214-ST-001	1	0	CAUSTIC BAG LIFTING FRAME	Mild Steel					
210	214-TK-002	1	0	CAUSTIC MIXING / STORAGE TANK	Mild Steel	15 m3 live capacity	-			
210	214-AG-001	1	0	CAUSTIC MIXING AGITATOR	Manufacturers Standard	Mixing	Grade 316 stainless steel shaft and propeller. Single	Fixed	1.1	1.1
210	214 DD 004				Manufaaturara Standard	8 m3/hr capacity, 20 m TDH,	stage propeller Progressive cavity c/w grade 316 stainless steel	Fixed	7.5	7.5
210	21411-004					1.08 SG 0.5 to 1 m3/hr capacity, 20 m	rotor and EPDM stator Progressive cavity c/w grade 316 stainless steel		1.5	
210	214-PP-005	1 	0	CYANIDE DESTRUCTION CAUSTIC DOSING PUMP	Manufacturers Standard	TDH, 1.08 SG	rotor and EPDM stator	Variable	1.1	1.1
	l			l	{					<u> </u>
AREA 210 / F	ACILITY 216 - SOD	IUM ME	TABIS	ULPHITE	ç		,		,	,
210	216-CN-001	1	0	SMBS HOIST	Manufacturers Standard	2 t capacity, 5 m travel, 9 m lift	-	Feeder	5.6	5.6
210	216-ST-001	1	0	SMBS BAG LIFTING FRAME	Mild Steel	-	-			
210	216-ZM-001	1	0	SMBS BAG BREAKER	SS316L	-	-			
210	216-TK-001	1	0	SMBS MIXING TANK	SS316L	15 m3 live capacity	0.3 m freeboard			
210	216-4G-001	1	0	SMRS MIXING TANK AGITATOR	Manufacturers Standard	Mixing	Grade 316 stainless steel shaft and propeller. Single	Fixed	11	11
210	21040-001				Manufacturers Otandard	15 m3/hr capacity, 5 m TDH,	stage propeller	Fined	45	4.5
210	210-PP-001			SMBS TRANSFER PUMP	Manufacturers Standard	1.18 SG	4 pole motor, Direct Coupled	FIXED	1.5	1.5
210	216-TK-002	1	0	SMBS STORAGE TANK	SS316L	25 m3 live capacity	0.3 m freeboard			
210	216-FA-001	1	0	SMBS TANKS VENTILATION FAN	Manufacturers Standard	3400 m3/hr @ 120 Pa	Ventilation of SMBS Mix and Storage Tanks	Fixed	0.8	0.8
210	216-PP-002	1	0	SMBS DOSING PUMP 1	Manufacturers Standard	0.5 to 2.2 m3/h at 20 m TDH, SG 1.18	Progressive cavity c/w grade 316 stainless steel rotor and EPDM stator	Variable	1.5	1.5
210	216-PP-003	1	1	SMBS DOSING PUMP 2	Manufacturers Standard	0.5 to 2.2 m3/h at 20 m TDH, SG 1.18	Progressive cavity c/w grade 316 stainless steel rotor and EPDM stator	Variable	1.5	
210	216-PP-004	1	0	SMBS AREA SUMP PUMP	Manufacturers Standard	22 m3/h @ 20m TDH, Slurry SG 1.0	c/w drive guard, CV drive configuration, fixed speed	Fixed	7.5	7.5
AREA 210 / F	ACILITY 217 - REA	GENTS	GENER		£		l	i	L	i
210	217 7M 001	1			Manufasturara Standard					:
	22.WI-UU I				Manufacturer Oter 1					
210	∠1/-∠M-002	1 	U	REAGENTS STURAGE STRUCTURE CONTAINER 2	wanuracurers standard				ļ	
210	217-ZM-003	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 3	Manufacturers Standard					
210	217-ZM-004	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 4	Manufacturers Standard					
210	217-ZM-005	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 5	Manufacturers Standard					
210	217-ZM-006	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 6	Manufacturers Standard					
210	217-ZM-007	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 7	Manufacturers Standard					
210	217-ZM-008	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 8	Manufacturers Standard	<u> </u>		<u> </u>		
210	217-7M-000		0		Manufacturere Standard					
210	2Livi-UU3				Manufactures Ci. 1					
210	217-∠M-010	1	0	REAGENTS STURAGE STRUCTURE CONTAINER 10	manutacturers Standard			<u> </u>		
210	217-ZM-011	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 11	Manufacturers Standard			[[

Plant Area	Equipment No.	Tot Qty	S/By Qty	Equipment Name	Matl of Constr. (incl. Lining)	Process Duty Point	Notes/Comments	Fixed/ Variable	kW Inst.	kW Total
210	217-7M-012	1	0	REAGENTS STORAGE STRUCTURE CONTAINER 12	Manufacturers Standard		·	Sheen		
210	217-210-012									
210	217-ZM-013	1	0	REAGENTS STORAGE DOME ROOM 1	Manufacturers Standard		Dome Shelter with enclosed end wall and door			
210	217-ZM-014	1	0	REAGENTS STORAGE DOME ROOM 2	Manufacturers Standard		Dome Shelter with enclosed end wall and door	ļ		ļ
210	217-ZM-015	1	0	REAGENTS STORAGE DOME ROOM 3	Manufacturers Standard		Dome Shelter with enclosed end wall and door			
210	217-ZM-016	1	0	REAGENTS STORAGE DOME ROOM 4	Manufacturers Standard		Dome Shelter with enclosed end wall and door			
210	217-ZM-017	1	0	REAGENTS STORAGE DOME ROOM 5	Manufacturers Standard		Dome Shelter with enclosed end wall and door			
210	217-ZM-018	1	0	REAGENTS STORAGE DOME ROOM 6	Manufacturers Standard		Dome Shelter with enclosed end wall and door			
210	217 70 010				Manufaaturara Standard		Domo Shelter with oneloced and well and door			
	217-210-013	}								
210	217-ZM-020	1	0	REAGENTS STORAGE DOME ROOM 8	Manufacturers Standard		Dome Shelter with enclosed end wall and door			
210	217-ZM-021	1	0	REAGENTS STORAGE DOME ROOM 9	Manufacturers Standard		Dome Shelter with enclosed end wall and door	ļ	L	ļ
210	217-ZM-022	1	0	REAGENTS STORAGE DOME ROOM 10	Manufacturers Standard		Dome Shelter with enclosed end wall and door			
		}								
AREA 210 / F	ACILITY 219 - COP	PER SL	JLPHAT	E						
210	219-HP-001	1	0	COPPER SULPHATE FEED HOPPER	SS316L	-	c/w manual rotary feeder			
210	219.7M.002	1	0	COPPER SUILPHATE ROTARY VALVE	Manufacturers Standard		Manual Rotary Feeder	¦		
210	210 211 002	÷						[<u> </u>
210	219-1K-001		0	COPPER SULPHATE MIXING / STORAGE TANK	SS316L	5 m3 live capacity	U.3 m treeboard			
210	219-AG-001	1	0	COPPER SULPHATE MIXING TANK AGITATOR	Manufacturers Standard	Mixing	stage propeller	Fixed	0.6	0.6
210	219-PP-001	1	0	COPPER SULPHATE DOSING PUMP 1	Manufacturers Standard	0.4 to 1.1 m3/h at 20 m TDH, SG1.15	Progressive cavity c/w grade 316 stainless steel rotor and EPDM stator	Variable	1.1	1.1
AREA 220 / F.	ACILITY 222 - RAW	WATE	R		*					
220	222-TK-001	1	0	RAW WATER TANK	Mild Steel	1000 m3 live capacity	Bolted construction			
220	222 EL 001				Varioue					
220	222-1 2-001					227 m3/h capacity. 56 m TDH.	Centrifugal pump c/w direct coupled motor, flexible			
220	222-PP-004	1	0	RAW WATER PUMP 1	Manufacturers Standard	1.0 SG	coupling, guard and rigid baseplate	Fixed	55.0	55.0
220	222-PP-005	1	0	RAW WATER PUMP 2	Manufacturers Standard	1.0 SG	coupling, guard and rigid baseplate	Fixed	55.0	55.0
AREA 220 / F	ACILITY 223 - PRO	CESS V	VATER							
220	223-TK-001	1	0	PROCESS WATER TANK	Mild Steel	500 m3 live capacity	Bolted construction			
220	222 DD 001		0		Manufaaturara Standard	211 m2/br 40 m TDH 10.90	Gland-sealed centrifugal pump c/w direct coupled	Eived	122.0	122.0
	223-FF-001	ļ				311 III3/III, 40 III 1DH, 1.0 30	Motor, flexible coupling, guard and rigid baseplate.	FIXED	132.0	132.0
220	223-PP-002	1	1	PROCESS WATER PUMP 2	Manufacturers Standard	311 m3/hr, 40 m TDH, 1.0 SG	motor, flexible coupling, guard and rigid baseplate.	Fixed	132.0	
AREA 220 / F	ACILITY 224 - POT	ABLE V	VATER	1)	L	
220	224-TK-001	1	0	POTABLE WATER STORAGE TANK	Mild Steel	50 m3 Live Capacity	0.5 m freeboard	[
							Skid-mounted system complete with control panel,			
220	224-PP-001	1	0	PLANT POTABLE WATER PUMP 1	Manufacturers Standard	5 m3/h capacity, 60 m TDH	pressure transducers, valving, manifold etc. Maintains constant 450kPa pressure in the system	Feeder	2.2	2.2
		{··	·		}		Skid-mounted system complete with control panel,			
220	224-PP-002	1	1	PLANT POTABLE WATER PUMP 2	Manufacturers Standard	5 m3/h capacity, 60 m TDH	pressure transducers, valving, manifold etc. Maintains constant 450kPa pressure in the system	Feeder	2.2	
220	224-VS-001	1	0	PLANT POTABLE WATER ACCUMULATOR	Manufacturers Standard	-				
220	224-ES-001		0	WATED TREATMENT SAFETY SHOWED	99316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti-			
	224-20-001	<u>} </u>				eve wash @ 130 kPa 4.56 m3/h - shower / 0.90 m3/h	Scald valve Combination Safety Shower and Evewash c/w Anti-			
220	224-ES-002	1	0	SMBS AREA LOWER SAFETY SHOWER	SS316	eye wash @ 130 kPa	Scald valve			
220	224-ES-003	1	0	SMBS AREA UPPER SAFETY SHOWER	SS316	4.56 m3/n - snower / 0.90 m3/n eye wash @ 130 kPa	Combination Safety Shower and Eyewash c/w Anti- Scald valve			
220	224-ES-004	1	0	DETOX LOWER SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h eve wash @ 130 kPa	Combination Safety Shower and Eyewash c/w Anti- Scald valve			
220	224-ES-005	1	0	DETOX UPPER SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti-	[
220	224-ES-006	1	0	DIESEL UNLOADING SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti-			
220	224 ES-007	1	0		SS316	eye wash @ 130 kPa 4.56 m3/h - shower / 0.90 m3/h	Scald valve Combination Safety Shower and Eyewash c/w Anti-	}		<u> </u>
220	22-1-E-3-UU/		0			eye wash @ 130 kPa 4.56 m3/h - shower / 0.90 m3/h	Scald valve Combination Safety Shower and Evewash c/w Anti-	<u>}</u>		<u> </u>
220	224-ES-008	1	0	CYANIDE AREA LOWER SAFETY SHOWER	SS316	eye wash @ 130 kPa	Scald valve	<u> </u>		
220	224-ES-009	1	0	CYANIDE AREA UPPER SAFETY SHOWER	SS316	eye wash @ 130 kPa	Scald valve	<u> </u>	ļ	ļ
220	224-ES-010	1	0	CAUSTIC AREA SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h eye wash @ 130 kPa	Combination Safety Shower and Eyewash c/w Anti- Scald valve			
220	224-ES-011	1	0	ACID UNLOADING SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h eye wash @ 130 kPa	Combination Safety Shower and Eyewash c/w Anti- Scald valve			
220	224-ES-012	1	0	ACID WASH COLUMN LOWER SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti-			
220	224-ES-013	1	0	ELUTION COLUMN TOP SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti-			
220	224-ES-014	1	0	CIL UPPER SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti-	<u> </u>		
220	224 ED 04F	<u> </u>			99316	eve wash @ 130 kPa 4.56 m3/h - shower / 0.90 m3/h	Scald valve Combination Safety Shower and Eyewash c/w Anti-	 		
220	22-4-E-0-U 10	·	0			eye wash @ 130 kPa 4.56 m3/h - shower / 0.90 m3/h	Scald valve Combination Safety Shower and Evewash c/w Anti-	<u> </u>		<u> </u>
220	224-ES-016	1	0	STRIP SOLUTION AREA SAFETY SHOWER	55316	eye wash @ 130 kPa	Scald valve	 		
220	224-ES-017	1	0	GOLDROOM LOWER SAFETY SHOWER	SS316	eye wash @ 130 kPa	Scald valve	<u> </u>		ļ
220	224-ES-018	1	0	GOLDROOM UPPER SAFETY SHOWER	SS316	eye wash @ 130 kPa	Scald valve]		<u> </u>
220	224-ES-019	1	0	CIL AREA LOWER SAFETY SHOWER 2	SS316	4.56 m3/h - shower / 0.90 m3/h eye wash @ 130 kPa	Combination Safety Shower and Eyewash c/w Anti- Scald valve			
220	224-ES-020	1	0	SAG MILL FEED SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti- Scald valve			
220	224-ES-021	1	0	CYCLONE CLUSTER SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h	Combination Safety Shower and Eyewash c/w Anti-			
		<i>(</i>			1	IOYO WISH (UZ I JU KPa	Cuala AdlAQ	r		*

Plant Area	Equipment No.	Tot Qty	S/By Qty	Equipment Name	Matl of Constr. (incl. Lining)	Process Duty Point	Notes/Comments	Fixed/ Variable Speed	kW Inst.	kW Total
220	224-ES-022	1	0	MILL DISCHARGE HOPPER LOWER SAFETY SHOWER	SS316	4.56 m3/h - shower / 0.90 m3/h -	Combination Safety Shower and Eyewash c/w Anti-			
220	224-ES-023		0	I IME AREA LOWER SAFETY SHOWER	SS316	eye wash @ 130 kPa 4.56 m3/h - shower / 0.90 m3/h -	Scald valve Combination Safety Shower and Eyewash c/w Anti-			
000	224 50 024	······			00010	eye wash @ 130 kPa 4.56 m3/h - shower / 0.90 m3/h -	Scald valve Combination Safety Shower and Eyewash c/w Anti-			
	224-ES-024		U	LIME AREA UPPER SAFETT SHOWER	55310	eye wash @ 130 kPa 4 56 m3/h - shower / 0.90 m3/h -	Scald valve Combination Safety Shower and Evewash c/w Anti-			
220	224-ES-025	1	0	CRUSHING AREA SAFETY SHOWER - PORTABLE	SS316	eye wash @ 130 kPa	Scald valve - Portable Unit.			
					<u> </u>					
AREA 220 / F	ACILITY 225 - GLAI	ND SEA	LING W	/ATER						
220	225-FL-001	1	0	GLAND WATER PUMP 1 FILTER	Various	-	-			
220	225-PP-001	1	0	GLAND WATER PUMP 1	Manufacturers Standard	10 m3/h capacity, 90 m TDH	Vertical centrifugal pump c/w direct coupled motor,	Fixed	5.5	5.5
220	225-FL-002	1	0	GLAND WATER PLIMP 2 FILTER	Various	-	guaro ano rigio baseplare			
220	225 DD 002				Manufaaturara Standard	10 m2/b consoity 00 m TDH	Vertical centrifugal pump c/w direct coupled motor,	Fixed	5.5	
	223-FF-002	··					guard and rigid baseplate		5.5	ļ
	l			[{			l	L	i
AREA 220 / F	ACILITY 226 - COO	LING W	/ATER	·	·····	T				
220	226-HX-001	1	0	COOLING TOWER	Various	-	Cooling tower c/w fan	Fixed	11.0	11.0
220	226-PP-001	1	0	COOLING TOWER RECIRCULATION PUMP 1	Manufacturers Standard	-	Part of Cooling Tower package	Fixed	15.0	15.0
220	226-PP-002	1	1	COOLING TOWER RECIRCULATION PUMP 2	Manufacturers Standard	-	Part of Cooling Tower package	Fixed	15.0	
220	226-FL-001	1	0	COOLING TOWER FILTER	Manufacturers Standard	-	Part of Cooling Tower package			
220	226 DD 002				Manufaaturara Standard			Fixed	11.0	11.0
220	220-FF-003					-		FIXED		
220	226-PP-004	1	0	COOLING WATER PUMP 2	Manufacturers Standard	-	-	Fixed	11.0	11.0
220	226-HX-002	1	0	COOLING WATER HEAT EXCHANGER	Various	-	Part of Cooling Tower package			
220	226-PP-005	1	0	COOLING WATER BIOCIDE DOSING PUMP	Manufacturers Standard	-	Part of Cooling Tower package	Fixed	0.6	0.6
220	226-PP-006	1	0	COOLING WATER ANTISCALANT DOSING PUMP	Manufacturers Standard	-	Part of Cooling Tower package	Fixed	0.6	0.6
					{					
4054 000 / 5				1	<u>}</u>	[{	ł	I	l
AREA 220 / F	ACILITY 228 - FIRE	WATE	к		ç	1	}		1	
220	228-FL-001	1	0	FIRE WATER SUCTION FILTER	Manufacturers Standard		Part of Fire Protection Pump skid		ļ	ļ
220	228-PP-001	1	0	FIRE WATER JOCKEY PUMP	Cast Iron Casing, Stainless Steel Impeller	1 m3/hr capacity, 70 m TDH, 1 SG	Part of Fire Protection Pump skid	Feeder	1.1	1.1
220	228-PP-002	1	0	FIRE WATER PUMP (ELECTRIC)	Cast Iron	120 m3/hr capacity, 73 m TDH, 1.SG	Part of Fire Protection Pump skid	Feeder	55.0	55.0
220	228-PP-003	1	0	FIRE WATER PUMP (DIESEL)	Cast Iron	120 m3/hr capacity, 73 m TDH,	Part of Fire Protection Pump skid.			
220	228-VS-001	1	0	FIRE WATER ACCUMULATOR	Manufacturers Standard	-	Part of Fire Protection Pump skid			
220	228-HR-001 - 020	20	0	FIRE WATER HOSE REELS	Various	Min flow:0.45 @ 220 kPA	c/w nozzle, reel isolation valve, and 36 m hose			
						50 m3/hr per hose, 2 hoses per	c/w cabinet, 2 x 25m hoses c/w nozzles	ļ		
220	228-FH-001 - 010	10	0	HRE WATER HYDRANTS	Various	hydrant, max 1000 kPa	7-off hydrants c/w foamer kit			
					{		<u> </u>		L	
AREA 230 / F	ACILITY 232 - WAT	ER TRE	EATME	NT PLANTS						
230	232-TE-001	1	0	PLANT POTABLE WATER TREATMENT PLANT	Various	3 m3/hr potable water capacity	-	Feeder	10+0.1	10.1
230	232-ZM-001	1	0	UV STERILISER	Manufacturers Standard	-	Part of Water Treatment package			
230	232-ZM-002		1	UV STERILISER	Manufacturers Standard		Part of Water Treatment package		<u> </u>	†
					+					
					}		1	<u>i</u>	l	i
AREA 230 / F	ACILITY 233 - SEW	AGE CO	OLLEC	rion & TREATMENT	γ·····	[,	,	
230	233-PP-001	1	0	SEWAGE MACERATOR PUMP STATION 1	Various	10 m3/h capacity, 20 m TDH	pumps to be confirmed	Feeder	1.5	1.5
230	233-PP-002	1	0	SEWAGE MACERATOR PUMP STATION 2	Various	10 m3/h capacity, 20 m TDH	Number and arrangement of sewage forwarding pumps to be confirmed	Feeder	1.5	1.5
230	233-TE-001	1	0	SEWAGE TREATMENT PLANT	Manufacturers Standard	350 personnel @ 130L per	-	Feeder	11.0	11.0
230	233-TK-001	1	0	GREY WATER SURGE TANK	Mild Steel	15 m3 capacity	Part of STP package			
230	233-PP-004		0	GREY WATER TRANSFER PLIMP	Cast Iron	8 m3/h capacity 20 m TDH	Part of STP package	<u> </u>	+	
	000 71/ 000	·			Nild Charl		Dest of OTD services	<u> </u>	<u> </u>	
230	233-TK-002	1	0	IREATED SLUDGE TANK	mild Steel	-	Part of STP package			
				<u> </u>	}		[l		
AREA 240 / F	ACILITY 241 - COM	PRESS	ED AIR							
240	241-CO-001	1	0	PLANT AIR COMPRESSOR 1	Manufacturers Standard	550 Am3/h FAD @ 700 kPag	Direct drive, oil Injected, air cooled air compressor	Feeder	75.0	75.0
240	241-CO-002	1	1	PLANT AIR COMPRESSOR 2	Manufacturers Standard	550 Am3/h FAD @ 700 kPag	Direct drive, oil Injected, air cooled air compressor	Feeder	75.0	
240	241-FI -001	1	1	PLANT COMPRESSOR 1 FII TFR 1	Manufacturers Standard	550 Am3/h FAD @ 700 kPag	Part of Compressed Air Systems Package			
040	044 51 600	<u>.</u>	÷		Manufacturer Otersi -	EE0 Am2/b FAD @ 2001.0	Dart of Compressed Al- Out-town D	<u> </u>	<u> </u>	
240	2+1-PL-UU2			I LANT OUMPRESSON I FILTER 2	manulaculers Standard	(UU KPag	an or compressed Air Systems Package		Ļ	
240	241-FL-003	1	1	PLANT COMPRESSOR 2 FILTER 1	Manufacturers Standard	550 Am3/h FAD @ 700 kPag	Part of Compressed Air Systems Package	ļ		
240	241-FL-004	1	1	PLANT COMPRESSOR 2 FILTER 2	Manufacturers Standard	550 Am3/h FAD @ 700 kPag	Part of Compressed Air Systems Package	<u> </u>		
240	241-VS-001	1	0	PLANT AIR RECEIVER	Mild Steel	3 m3 live capacity	c/w spring loaded safety valve, pressure gauge, manual drain valve and automatic condensate drain			
240	241-DR-001	1	0	PLANT AIR DRYER 1	Manufacturers Standard	550 m3/hr FAD @ 700 kPa /	Part of Compressed Air Systems Package	Feeder	20	2.0
						550 m3/br EAD @ 700 kDc /				
240	241-DR-002	1	1	PLANT AIR DRYER 2	Manufacturers Standard	5°C Discharge Temp. / 3°C	Part of Compressed Air Systems Package	Feeder	2.0	
040	241.1/0.000		_		Mild Steel	2 m2 lius acit-	c/w spring loaded safety valve, pressure gauge,	[[
240	∠41-VS-002	1	U		INING SLEEL	o mo live capacity	manual drain valve and automatic condensate drain.	ļ		Ļ
240	241-VS-003	1	0	GRINDING AREA AIR RECEIVER	Mild Steel	3 m3 live capacity	c/w spring loaded safety valve, pressure gauge,			
					<u>}</u>		menuel uren velve and automatic condensate drain.			
l				<u> </u>	<u>}</u>	ļ		l		

Plant Area	Equipment No.	Tot Qty	S/By Qty	Equipment Name	Mati of Constr. (incl. Lining)	Process Duty Point	Notes/Comments	Fixed/ Variable Speed	kW Inst.	kW Total
AREA 240 / F	ACILITY 242 - BLO	WER A	R							
250	242-BL-001	1	0	CIL & CYANIDE AIR BLOWER 1	Manufacturers Standard	1089 Nm3/hr FAD @ 225 kPag	Air cooled, single stage centrifugal, 100% oil free, direct drive, complete with integral after cooler and inlet filter.	Fixed	132.0	132.0
250	242-BL-002	1	1	CIL & CYANIDE AIR BLOWER 2	Manufacturers Standard	1089 Nm3/hr FAD @ 225 kPag	Swing standby unit. Air cooled, single stage centrifugal, 100% oil free, direct drive, complete with integral after cooler and inlet filter.	Fixed	132.0	
250	242-BL-003	1	0	CIL & CYANIDE AIR BLOWER 3	Manufacturers Standard	1089 Nm3/hr FAD @ 150 kPag	Swing standby unit. Air cooled, single stage centrifugal, 100% oil free, direct drive, complete with integral after cooler and inlet filter.	Fixed	132.0	132.0
AREA 250 / F	ACILITY 251 - FUE	LSTOR	AGE &	DISTRIBUTION						
250	251-TK-001	1	0	PLANT DIESEL DAY TANK	Mild Steel	5 m3 live capacity	Self bunded tank Final details to be confirmed.			
250	251-PP-001	1	0	DIESEL DISTRIBUTION PUMP	Manufacturers Standard	5 m3/h capacity, 25 m TDH	Final details to be confirmed.	Fixed	0.8	0.8
250	251-FL-001	1	0	POST DAY TANK DIESEL FILTER 1	Various	5 m3/h @ 250 kPa, 100 micron filter aperture	Final details to be confirmed.			
250	251-FL-002	1	1	POST DAY TANK DIESEL FILTER 2	Various	5 m3/h @ 250 kPa, 100 micron filter aperture	Final details to be confirmed.			
250	251-TK-002	1	0	DIESEL CONSTANT HEAD TANK	Mild Steel	0.5 m3 live capacity	Self bunded tank Final details to be confirmed.			
AREA 330 / F	ACILITY 331 - RAW	WATE	R SUPF	νLΥ						
330	331001	1	0	RAW WATER DIVERSION DAM	Manufacturers Standard					
330	331-PP-001	1	0	RAW WATER DAM PUMP 1	Manufacturers Standard	333 m3/h capacity, 39 m TDH	Submersible pump c/w pontoon	Fixed	115.0	115.0
330	331-PP-002	1	1	RAW WATER DAM PUMP 2 - SPARE	Manufacturers Standard	333 m3/h capacity, 39 m TDH	Submersible pump ONLY - Un-Installed Spare	Fixed	115.0	
330	331-ZM-001	1	0	RAW WATER PUMP PONTOON	Manufacturers Standard					
AREA 350 / F	ACILITY 351 - TAIL	INGS D	AM							
350	351-PP-001	1	0	TMF UNDERDRAINAGE PUMP	Manufacturers Standard	1 m3/h capacity, 20 m TDH	Design by others	Fixed	0.4	0.4
350	351-PP-002	1	0	TMF SEEPAGE PUMP	Manufacturers Standard	25 m3/h capacity, 40 m TDH	Design by others	Fixed	0.4	0.4
AREA 350 / F	ACILITY 353 - DEC	ANT SY	STEM							
350	353-PP-001	1	0	DECANT RETURN PUMP 1	Manufacturers Standard	333 m3/h capacity, 44 m TDH	Submersible pump c/w pontoon	Fixed	115.0	115.0
350	353-PP-002	1	1	DECANT RETURN PUMP 2 - SPARE	Manufacturers Standard	333 m3/h capacity, 44 m TDH	Submersible pump ONLY - Un-Installed Spare	Fixed	115.0	
350	353-ZM-001	1	0	DECANT PUMP PONTOON	Manufacturers Standard					

Lycopodium

KEFI MINERALS ETHIOPIA PLC TULU KAPI GOLD PROJECT

Process Plant Buildings List Revision No: 1

Plant Area	Facility	Equipment Name	Number	Size	Materials of Construction	Notes/Comments	Supplier	GA No.	Detail Dwg No.
AREA 370 - PLANT BUILDIN	ßS								
370 Process Plant Buildings	370 Plant Gatehouse	PLANT GATEHOUSE	1 No.	16 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-GH-002-01			
370 Process Plant Buildings	370 Security Gatehouse and Changeroom	SECURITY GATEHOUSE AND CHANGEROOM	1 No.	321 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-GH-001-01			
370 Process Plant Buildings	370 Dining Room / Conference Room	DINING ROOM / CONFERENCE ROOM	1 No.	90 m²	Prefabricated modular type building	DAP Drawing No. SE-Q-IM-001-01			
370 Process Plant Buildings	370 Mine Warehouse (incl. Workshop)	MINE WAREHOUSE & WORKSHOP	1 No.	1203 m ²	Steel frame c/w sheeting.	DAP Drawing No. SE-Q-WB-002-01			
370 Process Plant Buildings	370 Mine Office	MINE WAREHOUSE OFFICES	1 No.	315 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-WB-001-01			
370 Process Plant Buildings	370 Control Room	CONTROL ROOM	1 Lot	2 x 14 m ²	Prefabricated containerised building	DAP Drawing No. CC-Q-CR-001-01			
370 Process Plant Buildings	370 Laboratory	LABORATORY	1 Lot	63 m ²	Concrete Slab Only (150mm thick)	Based on Client's Supplied Dwg HQ-O- 54804 (Mammut Building Systems) [10.5m x 6m]			
370 Process Plant Buildings	370 Reagents Storage Shed	REAGENTS STORAGE SHED	1 No.	10 off 9m x 12.25m bays	12 x 40' Sea Containers c/w domed roof shelters	DAP Drawing No. CC-Q-W-001-01			
370 Process Plant Buildings	370 Flammable Store	FLAMMABLE STORE	1 No.	8' x 40'	40' Sea Container	DAP Drawing No. CC-Q-S-001-01			
370 Process Plant Buildings	370 Acid Store	ACID STORE	2 No.	2 x 8' x 40'	40' Sea Container	DAP Drawing No. CC-Q-S-001-01			
370 Process Plant Buildings	370 First Aid Clinic	CLINIC AND EMERGENCY RESPONSE BUILDING	1 No.	132 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-CE-001-01			
370 Process Plant Buildings	370 Metallurgical Building	METALLURGICAL BUILDING	1 No.	198 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-MB-001-01			
370 Process Plant Buildings	370 Mine/Plant Admin Building	MINE/PLANT OFFICES	1 No.	492 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-AD-001-01			
370 Process Plant Buildings	370 Ablutions	PLANT ABLUTIONS	1 No.	11 m ²	Prefabricated containerised building	DAP Drawing No. SE-Q-AB-001-01			

Page 1 of 1

Plant Area	Equipment No.	Tot Qty	S/By Qty	Equipment Name	Matl of Constr. (incl. Lining)	Process Duty Point	Notes/Comments	Fixed/ Variable Speed	kW Inst.	kW Total
AREA 330 / F	ACILITY 332 - VILLA	AGE PC	TABLE	WATER		1				
330	332-TK-001	1	0	VILLAGE POTABLE WATER STORAGE TANK	Mild Steel	50 m3 live capacity	Bolted construction	-	-	-
330	332-PP-001	1	0	VILLAGE POTABLE WATER PUMP 1	Manufacturers Standard	5 m3/h capacity, 60 m TDH	Skid-mounted system complete with control panel, pressure transducers, valving, manifold etc. Maintains constant 450kPa pressure in the system.	Feeder	2.2	2.2
330	332-PP-002	1	1	VILLAGE POTABLE WATER PUMP 2	Manufacturers Standard		Skid-mounted system complete with control panel, pressure transducers, valving, manifold etc. Maintains constant 450kPa pressure in the system.	Feeder	2.2	2.2
AREA 330 / FACILITY 333 - VILLAGE WATER TREATMENT										
330	333-TE-001	1	0	VILLAGE POTABLE WATER TREATMENT PLANT	Various	9.5 m3/hr potable water capacity	-	Feeder	10+0.1	10.1
330	333-ZM-001	1	0	UV STERILISER	Manufacturers Standard	-	Part of Water Treatment package			[
330	333-ZM-002	1	1	UV STERILISER	Manufacturers Standard	-	Part of Water Treatment package			
AREA 360 / F	ACILITY 363 - GATE	HOUS	E							
360	363-CA-001	1	0	GATEHOUSE CCTV CAMERA						
360	363-MO-001	1	0	GATEHOUSE CCTV MONITOR						
AREA 380 / FACILITY 383 - VILLAGE FIRE WATER										
380	383-FL-001	1	0	FIRE WATER SUCTION FILTER	Manufacturers Standard		Part of Fire Protection Pump skid			
380	383-PP-001	1	0	FIRE WATER JOCKEY PUMP	Cast Iron Casing, Stainless Steel Impeller	1 m3/hr capacity, 70 m TDH, 1 SG	Part of Fire Protection Pump skid	Feeder	1.1	1.1
380	383-PP-002	1	0	FIRE WATER PUMP (ELECTRIC)	Cast Iron	120 m3/hr capacity, 73 m TDH, 1.SC	Part of Fire Protection Pump skid	Feeder	55.0	55.0
380	383-PP-003	1	0	FIRE WATER PUMP (DIESEL)	Cast Iron	120 m3/hr capacity, 73 m TDH,	Part of Fire Protection Pump skid.			
380	383-VS-001	1	0	FIRE WATER ACCUMULATOR	Manufacturers Standard	-	Part of Fire Protection Pump skid			L
380	383-HR-001 - 020	5	0	FIRE WATER HOSE REELS	Various	-	c/w nozzle, reel isolation valve, and 36 m hose			
380	383-FH-001 - 010	5	0	FIRE WATER HYDRANTS	Various	-	c/w cabinet, 2 x 25m hoses c/w nozzles 7-off hydrants c/w foamer kit			
AREA 380 / FACILITY 384 - VILLAGE SEWAGE TREATMENT										
380	384-PP-001	1	0	VILLAGE SEWAGE MACERATOR PUMP STATION 1	Various	10 m3/h capacity, 20 m TDH	Number and arrangement of sewage forwarding pumps to be confirmed	Feeder	1.5	1.5
380	384-PP-002	1	0	VILLAGE SEWAGE MACERATOR PUMP STATION 2	Various	10 m3/h capacity, 20 m TDH	Number and arrangement of sewage forwarding	Feeder	1.5	1.5
380	384-TE-001	1	0	VILLAGE SEWAGE TREATMENT PLANT	Manufacturers Standard	350 personnel @ 130L per person per day	-	Feeder	11.0	11.0
380	384-TK-001	1	0	GREY WATER SURGE TANK	Mild Steel	-	Part of STP package			
380	384-PP-003	1	0	GREY WATER TRANSFER PUMP	Cast Iron	8 m3/h capacity, 20 m TDH	Part of STP package			
380	384-TK-002	1	0	TREATED SLUDGE TANK	Mild Steel	}-	Part of STP package			
[

Lycopodium

KEFI MINERALS ETHIOPIA PLC TULU KAPI GOLD PROJECT

Village Buildings List Revision No: 1 Print Date: 30/09/2016

Plant Area	Facility	Equipment Name	Number	Size	Materials of Construction	Notes/Comments	Supplier	GA No.	Detail Dwg No.
AREA 380 - VILLAGE BUILI	SINGS								
380 Village Buildings	380 Gatehouse	GATEHOUSE	1 No.	16 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-GH-001-01			
380 Village Buildings	380 Management Unit	MANAGEMENT ACCOMMODATION	0 No.	315 m ²	Prefabricated modular type building of 9 units @ 35 sq.m each	DAP Drawing No. SE-Q-AC-001-01			
380 Village Buildings	380 Supervisory Accommodation (Type AC1)	ACCOMMODATION UNIT TYPE 1-AC 1	7 No.	1008 m ²	Prefabricated modular type building of 7 units @ 144 sq.m each	DAP Drawing No. SE-Q-AC-002-01			
380 Village Buildings	380 Supervisory Accommodation (Type AC2)	ACCOMMODATION UNIT TYPE 2-AC 2	21 No.	2709 m ²	Prefabricated modular type building of 21 units @ 129 sq.m each	DAP Drawing No. SE-Q-AC-003-01			
380 Village Buildings	380 Mess Area, Kitchen, Office and Storage Area	MESS AREA, KITCHEN, OFFICE AND STORAGE AREA	1 No.	795 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-KD-001-01			
380 Village Buildings	380 Recreational Facilities (General Staff)	RECREATIONAL FACILITIES	1 No.	141 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-R-001-01			
380 Village Buildings	380 Laundry and Ironing Block	LAUNDRY AND IRONING	1 No.	145 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-L-001-01			
AREA 450 - MINING FACILI'	TIES BUILDINGS								
380 Village Buildings	380 Administration Block	ADMINISTRATION BLOCK	1 No.	129 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-AD-001-01			
380 Village Buildings	380 Recreation Block	RECREATION BLOCK	1 No.	141 m ²	Prefabricated modular type building	DAP Drawing No. SE-Q-R-002-01			

Page 1 of 1

PROCESS FLOW DIAGRAMS (PFDS)

ELECTRICAL LOAD LIST

TULU KAPI GOLD PROJECT

STUDY UPDATE

Engineering innovation & integrity in partnership	Electrical Equipment	Load List TUL-0001-E-LL-0001 Revision: 1 Date: 9/09/16	Prepared For	KEFI Minerals Ethiopia PLC Tulu Kani Gold Project	Ethiopia	1953
Contact Information ECG Engineering Pty Ltd

Address: 12 Meares Way, Canning Vale WA 6155 Postal: PO Box 1006, Canning Vale DC, WA 6970

Tel: +61 8 6164 3400 Fax: +61 8 9456 2671 Email: info@ecg-engineering.com.au Web: www.ecg-engineering.com.au

Document Information

Client Information Prepared For. KEFI Minerals Ethio

KEFI Minerals Ethiopia PLC

Project Name: Tulu Kapi Gold Project

Site Location: Ethiopia Client Reference: 1953

ECG Information

Project Manager: Brent Chadwick Project No: TUL-0001 Discipline Code: E Doc Type: Load List Doc Type Code: LL Doc No: 0001 Doc No: Electrical Equipment

Document Control

Decomplan of D

bave		adwick	Cert	
Appr	310	B.Ch	M.Le(
By	111	M.Melville	M.LeCerf	
(o nateriar a	3100	B.Chadwick	B.Chadwick	
	Minor revision to align with MEL	Issued for FEED	Issued for Review	
	9/9/2016	6/9/2016	27/7/2016	
	-	0	A	

YOY.	Date	Description of Revision	Design Approved	Project Approved	Client Approved
+	9/09/2016	Minor revision to align with MEL	X	000	Ŋ
0	6/09/2016	Issued for FEED			
×	27/07/2016	Issued for Review			
	And and a second				

Copyright / Disclaimor

The contents of this document have been prepared for the exclusive use of the named Clerit, and may not be used by any third party without the written consent of both the manued clara and ECG Explorering by LLL. The Clerit accrowkedges that the contents of this document were prepared by the Consultant using the information that was made available to the Consultant and based on the Consultant's assessment were prepared by the Consultant using the information that was made available to the Consultant and based on the Consultant's assessment of that information. The Clerk, in accepted the document, agress to missions arise from information which was not provided to the Consultant. In addition, to the earth the document damines, to preleas to missions arise from information which was not provided to the Consultant. In addition, to the earth the document damines to predict Muere mathors, in Client adroxededges that the Consultant has used its reasonable endeavours with respect to those matters, but the Client agrees to release the Consultant from any liability with respect to future matters, availant for early on the Consultant's predictions and avail form its own assessment of those future matters.

KEFI Minerals Ethiopia PLC Tulu Kapi Gold Project

		CONNECTED		MAXIMUN	DEMAND		AVERAGE	DEMAND		TRANSFORMER DE	TAILS
EQUIPMENT TAG	EQUIPMENT NAME	kW LOAD	MD kW	MD KVAR	MD KVA	AD PF	av kw	MWh/year	TX SIZE (kVA)	TX LOADING (@MD)	ТХ ТҮРЕ
270-SB-001	MAIN 11kV SWITCHBOARD	8657	6678	1474	6838 0	86.0	5335	46732			
120-MC-001	FEED PREPARATION MCC	382	270	141	305	.89	191	1670			
120-TX-001	FEED PREPARATION TRANSFORMER								500	61.01%	PAD MOUNT
130-MC-001	Geninding / Cli McC	1959	1108	65. 2	1286	1.86	000	8760			
130-TX-001	GRINDING / CIL TRANSFORMER	0.004	0044	0.1					2000	64.28%	PAD MOUNT
210-MC-001	TAILINGS / SERVICES AREA MCC	1724	929	470	1041 0	3 0.89	324	7218			
210-TX-001	TAILINGS / SERVICES TRANSFORMER								2000	52.05%	PAD MOUNT
130-ML-001	SAG MILL DRIVE	4592	4370	1712	4693 0	93	3320	29083			
270-PE-001	POWER EACTOR CORRECTION	c	c	-1500	-						
700-11-077		2		DOCT-							
	OVERHEAD POWERLINE	1424	1076	422	1155 0	0.93	948	8301			
220-MC-001	RAW WATER DAM MCC	120	96	57	111 0	.86 8	37	766			
220-TX-001	RAW WATER DAM TRANSFORMER								250	44.57%	POLE MOUNT
		1.73	07	40	100	00	2	011			
350-TX-001	DECANT RETURN TRANSFORMER			2	001				250	43.39%	POLE MOUNT
350-MC-002	TSF SEEPAGE / UNDERDRAINAGE MCC	1	1	1	1 0	1.56 1		6			
350-TX-002	TSF SEEPAGE / UNDERDRAINAGE TRANSFORMER								50	2.86%	POLE MOUNT
360-SB-001	PLANT ENTRY INER A STRICT IRE SWITCH BOARD	150	112	37	118	95	0	895			
360-TX-001	PLANT ENTRY INFRASTRUCTURE TRANSFORMER								500	23.58%	KIOSK
370-SB-001	PLANT INFRASTRUCTURE SWITCHBOARD	270	208	68	219 0	1.95	190	1663			
370-TX-001	PLANT INFRASTRUCTURE TRANSFORMER								500	43.79%	KIOSK
380-SB-001	ACCOMMODATION CAMP SWITCHBOARD	561	401	131	422 0	.95	366	3208			
380-TX-001	ACCOMMODATION CAMP TRANSFORMER								500	84.46%	KIOSK
450-SB-001	MINE SERVICES SWITCHBOARD	182	145	70	161 0	06.0	102	893			
450-TX-001	MINE SERVICES TRANSFORMER								250	64.43%	POLE MOUNT
450-SB-002	EXPLOSIVES STORE SWITCHBOARD	20	16	8	18 0	1.90	1	98			
450-TX-002	EXPLOSIVES STORE TRANSFORMER								50	35.56%	POLE MOUNT
TOTALS		10,084	7 763	1 806	7 087	0.07	6 28 2	EE 034			
IUIALS		10,001	(,133	1,030	1,902	16.0	0,202	+onicc			

PLC	
hiopia	roject
als Et	3old P
Miner	Kapi (
KEFI	Tulu

Electrical Equipment Load List Detailed

REV	A L	00	00	00	0	0	0		00		0 0	0 0	0.0	0.0	0.0	0	0.0	00	0.0	0.0	_ 0	00	0	0 0	0	0	0	0 0	.0.0	0.0	0.0	0.0	0 0	0	00	0 0	0	0 0	c	00	0.0	00	00	c	000		0 0	0 0	00	0				0	0 0	
VERAGE		FED FROM SWITCHROOM L&SP DB		FED FROM SWITCHROOML &SP DB				FED FROM SWITCHROOM L&SP DB																															FED FROM GOLD ROOM L&SP DB						EED EPOM COLD POOM LS SP DB	FED FROM GOLD ROOM L&SP DB	FED FROM GOLD ROOM L&SP DB	FED FROM GOLD ROOM L&SP DB FED FROM GOLD ROOM L&SP DB	FED FROM GOLD ROOM L&SP DB		FED FROM GOLD ROOM L&SP DB FED FROM GOLD ROOM L&SP DB					
A	(MWh/year	152.03 0.00	115.18 820.16	18.15	2.94	156.56	121.48	204.12	2.56	3.20	35.18	29083.20 1427.73	5.89 42.04	0.00	44.06 602.73	204.12	204.12	103.49 0.00	55.07 126.14	0.00	66.09 191.87	20.41 16.36.55	0.00	0.70 152.94	500.18	28.91	500.18	28.91 76.14	500.18	76.14	500.18 28.01	76.14	500.18 28.91	76.14	28.91 28.91	76.14	10.35	10.35 16.36	000	52.42 16.04	145.35 0.e4	0.04 5.24	16.04 24.30	235.63	235.63	0:00	0.86	0.00	0.00	5.24	0.00	80.0	373.42	3/ 3.42 10.35	590.97 0.00	
	(kva)	18.07 0.00	17.77 105.20	2.07	0.34	21.80	14.39	28.42	0.30	0.65	4.02	3458.33 204.11	1.05	0.00	7.62 80.95	28.42	28.42	15.54	9.53 18.70	0.00	11.43 21.90	2.84 193.19	0.00	0.08 22.67	71.37	3.88	71.37	3.88 11.29	71.37	3.00 11.29	71.37	11.29	71.37 3.88	11.29	3.88	11.29	1.55	1.55 2.71	000	8.20 2.46	17.33	0.82	2.46 2.77	32.50	32.59	0.00	0.10	0.00	0.00	0.82	0.00	16 31	53.96	33.90 1.55	67.53 0.00	
AVERAGE	Y (kW)	17.36	13.15 93.63	2.07	0.34	17.87	13.87	23.30	0.29	0.37	4.02	3320.00 162.98	0.67	0.00	5.03	23.30	23.30	0.00	6.29	00.00	21.90	2.33	0.00	0.08	57.10	3.30	57.10	3.30	57.10	8.69	57.10	8.69	3.30	8.69	3.30	8.69	1.18	1.18	000	5.98	16.59	09.0	1.83	26.90	26.90	00.00	0.10	0.00	0.00	0.60	0.00	11 00	42.63	1.18	67.46 0.00	
PI ANT		0.70	0.70	0.70	0.70	0.70	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91 0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.01	0.91	0.91	0.91	
GM	(KVA)	25.81	25.38 150.28	2.96	0.48	31.14	15.77	31.14	0.33	0.72	4.40	4693.23 223.65	1.15	0.00	8.35 88.70	31.14	31.14	0.00	10.44	0.00	12.52 24.00	3.11 2.11.69	0.00	0.09 24.84	78.21	4.25	78.21	4.25	78.21	4.23	78.21	12.37	78.21	12.37	4.25	12.37	1.70	2.97	000	8.98	18.98	06.0	3.04	35.71	35.71	0.00	0.00	0.0	0.00	0.90	0.00	17.87	59.13	1.70	74.00	
	(kVAR)	7.18 0.00	17.07	00.0	0.00	17.82	4.22	17.82	60.0	0.59	00.0	0 1711.58 132.72	0.88	0.00	6.27	17.82	17.82	11.07	7.84	0.00	9.41	1.78	0.00	0.00	46.92	2.24	46.92	2.24	46.92	7.89	46.92	7.89	46.92 2.24	7.89	2.24	7.89	1.11	2.15	000	6.14	5.46	0.61	1.80	20.17	20.17	00.0	00.0	00:0	00.0	0.61	0.00	10.00	36.25	30.20 1.11	3.31 0.00	
	TOR	24.79 0.00	18.78	2.96	0.48	25.53	15.20	25.53	0.32	0.40	4.40	4370.0	0.74	0.00	5.51	25.53	25.53	12.94	6.89 16.78	0.00	8.27 24.00	2.55 204.71	0.00	0.09	62.57	3.62	9.52	3.62	62.57	9.52	62.57	9.52	62.57 3.62	9.52	3.62	9.52	1.29	2.05	000	6.56	18.18	0.00	3.04	29.47	29.47	0.0	0.11	0.00	0.00	0.66	00.0	13.04	46.71	1.29	73.92	
	CTOR FAC	1.00	1.00	1.00	0.02	1:00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	00.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.10	0.00	0.02	1.00	1.00	1.00	1.00	1:00	1.00	1:00	1.00	1.0	1.00	1.00	1.00	0.10	0.10	8	1.00	1.00	0.10	1.00	6	1:00	0.00	0.02	1.00	1.00	0.10	1:00	100	10	0.10	0.00	
MECHAN	LOAD FA	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.95	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.8.0	0.80	0.80	0.80	0.80	0.8.0	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0000	0.80	0.80	0.80	
		%					%(%0			%(%0	%																		%			26	%											
4D	:) (R					N		~	â		1										~	N																		N			8		Ħ										-
NECTED LO		31.1	31.7 187.9	3.7	30.0	38.9	19.1	38.9	0.4	0.9	5.5	4783.2 368.76	1.4	3.4	10.4	38.9	38.9 38.9	21.3	13.0 25.6	25.6	30.0	38.9 256.4	256.4	5.5 31.1	97.8	5.3	0.01 87.8	5.3	97.8	15.5	97.8	15.5	97.8 5.3	15.5	97.0 5.3	15.5 34.6	21.3	3.7	00	3.4	22.8	11.2	3.4	40.9	40.9	0.0	6.7	0.0	0.0	11.2	0.0	20.9	73.9	21.3	92.5 92.5	
EN DF CON	:}	1:00	0.74	1.00	1.00	0.82	1:00	0.82	- 101	0.56	1.00	0.96	0.64	0.74	0.66	0.82	0.82	0.76	0.66	0.77	0.68	0.82	1.00	0.77	0.80	0.85	0.80	0.85	0.80	0.77	0.80	0.77	0.80	0.77	0.85	0.77	0.76	0.76	10	0.74	1.00	0.73	0.74	0.90	0.90	301	1.00	1:00	1.00	0.73	1.00	0.73	0.79	0.76	1:00	
	kw kw	31.0 0.0	23.5 167.2	3.7	30.0	31.9	19.0	31.9	0.4	0.5	5.5	4591.8 293.6	0.9	2.5	6.9	31.9	31.9	16.2	8.6	19.7	30.0	31.9 255.9	255.9	5.5 23.9	78.2	4.5	78.2	4.5	78.2	11.9	78.2	11.9	78.2	11.9	4.5	11.9 24.6	16.2	16.2 2.6	00	8.2	22.7	8.2	2.5 3.8	36.8	36.8	0.0	6.7	0.0	0.0	8.2	0.0	16.3	58.4	16.2	92.4 92.4	
NRIVE FFFIC	TYPE ENCY	/SD 0.97 DR 1.00	00L 0.94 00L 0.96	DR 1.00	DR 1.00	00L 0.94	/SD 0.97	UK 1.00	SD 0.95	0.74 0.74	DR 1.00	/SD 0.98 DR 0.94	0.82 0.82	01 0.88	00L 0.87	0.0L 0.94	0L 0.94	0.93 0.93 0.93 0.93	00L 0.87	0.0L 0.94	DR 1.00	30L 0.94 (SD 0.98	SD 0.98	DR 1.00 DOL 0.92	0.96 0.96	00L 0.89	00L 0.96	00L 0.89 00L 0.92	0.96 0.96	0.0L 0.92	0.96 0.96	00L 0.92	00L 0.89	0.92 0.92	00L 0.89	DOL 0.92	00F 0.93	00L 0.86	DR 100	00L 0.88	/SD 0.97	00L 0.92	DR 1.00	DR 0.95	DR 0.95	DR 1.00	DR 1.00	DR 1.00	DR 1.00	0.92 00L 0.92	DR 1.00	001 100	00L 0.94	JOL 0.93	79.0 0.97 79.0 0.97	
		V YTUQ	DUTY DUTY		PUTY P					DUTY D			DUTY D	STDBY D		DUTY	STDBY C	STDBY D	DUTY D	STDBY D		DUTY D	STDBY V		DUTY							DUTY D							PUTV F	DUTY D				A VTIO		STDBY F									STDBY V	
INSTAL	ED (KW	30	22 160	3.7	30	30	18.5	30	0.4	0.37	5.5	4500 274.65	0.75	22	1.5	30	30	15	1.5	18.5	30	30 250	250	5.5 22	75	4	75	4	75	11	75	11	4	11	67	11 34.6	15	22		7.5 2.2	22	7.5	22 3.8	35	35	The of	6.74		V	7.5	54	45	55	15	06 80	_
UAME PLATE	kW)	80 1,55	22	2.2+1.5	00	00	18.5	00°	0.4	37	5.5	274.65	0.75	22	1.5	00	80	2	5.5	8.5	50 80	80 250	250	5.5 2 × 9	5	-	5		5		5	-	9 - +	1	°	11 84.6	15	15 2 x 1.1	5	2 2	22	5	22	55	55	22	5.74	5 5	5	ц,	24 0.55 0.2	 	55 A.D	5	00	
DRIVE DETAILS		IRIMARY APRON FEEDER IRIMARY APRON FEEDER AUTOMATIC LUBRICATION UNIT	2 IBRATING GRIZZLY 2 RIMARY CRUSHER 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RIMARY CRUSHER MAINTENANCE HOIST	TRIMART CANONER UNSCHWEE CONVETOR	ECLAM APRON FEEDER	ILL FEED CONVEYOR THE PLENKAU DMAILIC LUBRICATION UNTI	IME SILO BIN ACTIVATOR 0 MME SILO ROTARY VAI VE 0	MILE SILO ROTARY VALVE COOLING FAN	IME FUISI IME SILD DUST COLLECTOR	AG MILL MOTOR 44 MOTOR 24 MOTOR 24 MOTOR 25 MOT	AG MILL MOTOR SPACE HEATER	AG MILL MOTOR BEARING LUBRICATION PUMP 1	AG MILL GEARBOX LUBRICATION IMMERSION BAR HEATER 1 AG MILL INCHING DRIVE 9	AG MILL TRUNNION BEARING LUBRICATION OIL PUMP 1	AG MILL TRUNNION BEARING LUBRICATION OIL PUMP 3	AG MILL TRUNNION BEARING LUBRICATION OIL RECIRCULATION PUMP 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AG MILL TRUNNION BEARING LUBRICATION IMMERSION BAR HEATER	AG MILL REDUCER/ PNION BEARING LUBRICATION PUMP 2	AG MILL PINION BEARING LUBRICATION IMMERSION BAR HEATER 13 AG MILL LINER HANDLER 33	AILLING AREA SUMP PUMP 3 3 2 CLONE FEED PUMP 1 2	VCLONE FEED PUMP 2	YCLONE AREA DAVIT CRANE RASH SCREEN	IL TANK 1 AGITATOR	CIL TANK 1 INTERTANK SCREEN	ALTANK I CARBON RECOVERT FUMP	SIL TANK 2 INTERTANK SCREEN 4 SIL TANK 2 CARBON RECOVERY PUMP 1	IL TANK 3 AGITATOR	AL LAWA 3 INTERTAWA SCREEN 44	IL TANK 4 AGITATOR	IL TANK 4 CARBON ADVANCE PUMP	IL TANK 5 AGITATOR	IL TANK 5 CARBON ADVANCE PUMP	die twee ordet and ordet and the transfer of t	11 TANK 6 CARBON ADVANCE PUMP	all AREA SUMP PUMP 1	1L AREA SUMP PUMP 2 OADED CARBON RECOVERY SCREEN	TRIP SOLUTION HEATER	HERMAL OIL CIRCULATION PUMP ULPHAMIC ACID PUMP	TRIPPING SOLUTION PUMP	LITTION SUMP PUMP	2ARBON DEWATERING SCREEN 2ARBON REGENERATION KILN 3	31 ECTROWINNING CELL 1 RECTIFIER	ELECTROWINNING CELL 2 RECTFIER 1 ECTROWINNING CELL 2 RECTFIER 3		SOLD ROOM CRANE SOLDROOM ROOF FAN 1 1	30LDROOM RODF FAN 2 30LDROOM RODF FAN 3 1	SOLDROOM ROOF FAN 4 AN EII TEP VACI II IM PI IMP AN 1		NRYING UVEN 2 ZARING FURANCE 11 RNA.GF EXTRACTION F.AM	DININGLEATING TANK	ARBON SAFE IT SUREN 2/ANNUED EDSTRUCTION TANK 1 AGITATOR 5/ANNUED EDSTRUCTION TANK 0 AGITATOR	TANDE DESTRUCTION TANK Z AGLIATOR	SYANIDE DESTRUCTION DISCHARGE PUMP 1 SYANIDE DESTRUCTION DISCHARGE PUMP 2	
S/RV FMF	QTY RGE	0 0	0 0	- 0 - 0	0 -	0 0	0	00	00	00	0 1 F	0 0	0	1 0	000	0	1 0	0 0	0 0	0	0 -	0 1 0	1	0 1 0	1	0	0 1 0	00	1 0		1 0		- 0	0,	- 0	0		0 1	0	0 0	000	0 0	0 0	-	·	201	0 1 0	• •	000						1 0	
Γ ΤΔΩ ΤΩΤ	ary						-							- +-	4		1		10 T		- °		-		-														-							- -						-	,			H
		121-FE-001 121-ZM-002	121-SC-002 121-CR-001	121-ZM-003 121-ZM-005	121-CN-001	125-CV-002	131-FE-001	131-CV-003	212-VB-001 212-ZM-001	212-FN-001	212-CN-001	132-ZM-002 130-MC-002	132-ZM-014	132-PP-001 132-PP-002	132-ZM-004 132-ZM-005	132-PP-003	132-PP-005	132-PP-006 132-PP-007	132-ZM-007	132-PP-009	132-ZM-009 132-ZM-010	132-PP-010 133-PP-001	133-PP-002	133-CN-001 141-SC-001	162-AG-001	162-SC-001	162-AG-002	162-SC-002 162-PP-002	162-AG-003	162-PP-003	162-AG-004	162-PP-004	162-AG-005 162-SC-005	162-PP-005	162-XG-006 162-SC-006	162-PP-006 162-CN-001	162-PP-007	162-PP-008 171-SC-001	173-HX-001	173-PP-001	173-PP-003	173-PP-005	174-SC-001 174-KN-001	176-RC-001	176-RC-002	176-ZM-006	177-FA-001	177-FA-002 177-FA-003	177-FA-004	177-PP-002	177-FC-001 177-FC-001	181-50-001	183-AG-001	183-PP-001	183-PP-002 183-PP-003	
	T NO.	001 002	002 001	003	001	002	001	003	001	001	001	002 002	014	002	004	003	005	006	007	600	010	010	002	001	001	001	002	002	003	003	004	004	005	005	900	006	007	001	001	001	003	005	001	100	002	900	001	002 003	004	002	001	100	001	001	002 003	
POILIPA	ENTID	FE ZM	SC	MZ	CN	000	FE	CV	VB	EN	DC	ZM	ZM	- d	ZM	d d	L 4	d d	ZM	4	ZM	dd	ЬЬ	sc	AG	SC	AG	SC	AG	2C BB	AG	PP	SC	ЪР	SC	PP	ЪЪ	SC	XH	d d	4	2 4	KN KN	SS	RC	WZ	FAC	FA	FA	2	FC N	c c	AG AG	PP	d d	H
o wes		121	121	121	121	125	131	131	212	212	212	132	132	132	132	132	132	132	132	132	132	132	133	141	162	162	162	162	162	162	162	162	162	162	162	162	162	152	173	173	173	173	174	176	176	176	177	177	177	177	111	181	183	183	183	H
RWITCHROAF		120-MC-001	120-MC-001 120-MC-001	120-MC-001	120-MC-001	120-MC-001	130-MC-001	130-MC-001	130-MC-001 130-MC-001	130-MC-001	130-MC-001	130-ML-001 130-MC-001	NCL NCL	INCL	INCL NCL	INCL	INCL	NCL	INCL	INCL	130-MC-001	130-MC-001 130-MC-001	130-MC-001	130-MC-001 130-MC-001	130-MC-001	130-MC-001	130-MC-001	130-MC-001 130-MC-001	130-MC-001	130-MC-001	130-MC-001	130-MC-001	130-MC-001 130-MC-001	130-MC-001	130-MC-001	130-MC-001	130-MC-001	130-MC-001 130-MC-001		130-MC-001 130-MC-001	130-MC-001	130-MC-001	130-MC-001 130-MC-001	130-MC-001	130-MC-001	100 011	130-MC-001		130.MC-001	130-MC-001	130-MC-001	210.MC-001	210-MC-001	210-MC-001	210-MC-001 210-MC-001	

Electrical Equipment Load List Detailed

	MBIC ECITIEM ECITIEM	EN EOTIDMENT TAG	TOT S/BV	DRIVE DE FAILS EME LECHIIDMENT NAME	NAME PLATE									MD BI ANT	AVEDACE	AVERAGE AVE	AVERAGE	DEV
	ENT ID T NO.		ατγ ατγ		(kW)	ED (KW)	TYPE	NCY kW		LOADING	LOAD FACTOR F	ACTOR	(KVAR)	(KVA) AVAILABIL	ΠY (kW)	(kVA) (MV	Vh/year)	į
210-MC-001	211 CN 001	211-CN-001	1	1 CYANIDE HOIST	5.64	5.64 D	UTY FDR 1	00 5.6	1.00 5.6	IFACTOR	0.80	02 0.09	0.00	0.09 0.91	0.08	0.08 0.72		0
210-MC-001	211 PP 001	211-PP-001	0 0	1 CTANIDE MIXING LANK AGITATOK 0 CYANIDE TRANSFER PUMP	1.1	11	UTY DOL C	86 1.3	0.69 1.9		0.80	00 1.03	1.08	1.49 0.91	0.94	1.36 8.22		0.0
210-MC-001 210-MC-001	211 PP 002 211 PP 003	211-PP-002 211-PP-003		0 CYANIDE RECIRCULATION PUMP 1 0 CYANIDE RECIRCULATION PUMP 2	15	15 15 S'	DBY DOL C	87 1.7 87 1.7	0.66 2.6 2.6 2.6		0.80 0.80 0	00 1.38	1.57	2.09 0.91	1.26	1.91 11.0	04	00
210-MC-001	211 PP 004	211-PP-004	0	0 CVANIDE DOSING PUMP	0.55	0.55	UTY DOL	79 0.7	0.62 1.1		0.80	00 0.55	0.70	0.89 0.91	0.51	0.82 4.43		0.01
210-MC-001 210-MC-001	211 PP 005 214 AG 001	211-PP-005 214-AG-001	0 0	1 CYANIDE AREA SUMP PUMP 1 CALISTIC MIXING AGITATOR	11	11		.92 8.2 Rf 1.3	0.73 11.2		0.80	10 0.66	1.08	0.90 0.91	0.60	0.82 5.24 1.36 8.25		0 0
210-MC-001	214 PP 004	214-PP-004	,	0 ELUTION CAUSTIC DOSING PUMP	3		UTY DOL 0	88 3.4	0.74 4.6	1000	0.80	00 2.73	2.48	3.69 0.91	2:49	3.37 21.6	22	
210-MC-001	214 PP 001	214-PP-001	0 0		2.2	2.2 D	UTY DOL C	88 2.5	0.74 3.4	20.02	0.80	00 2:01	1.80	2.70 0.91	1.83	2.46 16.0	34	0
210-MC-001 210-MC-001	214 PP 002 214 PP 003	214-PP-002 214-PP-003		0 HYDROCHLORIC ACID PUMP 1 ACID AREA SUMP PUMP	7.5	7.5 D	UTY DOL C	92 8.2 92 8.2	0.73 11.2		0.80 0.80 0	00 6.56 10 0.66	6.14 0.61	8.98 0.91 0.90 0.91	5.98	8.20 52.4	2	0 0
210-MC-001	216 CN 001	216-CN-001	1	1 SMBS HOIST	5.64	5.64 D	UTY FDR	00 5.6	1.00 5.6		0.80	02 0.09	0.00	0.09 0.91	0.08	0.08 0.72		0
210-MC-001 210-MC-001	216 PP 001 216 PP 001	216-PP-001 216-PP-001	0 0	1 SMBS MIXING TANK AGITATOR 0 SMBS TRANSFER PUMP	1.5	1.1	UTY DOL C	87 1.7	0.66 2.6		0.80 1	00 1.03	1.57	1.49 0.91 2.09 0.91	1.26	1.91 8.22	01	0 0
210-MC-001 210-MC-001	216 FA 001 216 PP 002	216-FA-001 216-PP-002	0 0	0 SMBS TANKS VENTILATION FAN 0 SMBS DOSING PUMP 1	0.75	0.75 D	UTY DOL C	.82 0.9 0.6	0.64 1.4	20%	0.80 1	00 0.74	0.88	1.15 0.91 0.91	0.67	1.05 5.85		0 0
210-MC-001	216 PP 003	216-PP-003		0 SMBS DOSING PUMP 2	0.55	0.55 S'	DBY VSD -	0.6	-	20%	0.80	00.00	100	0.91	0.00	0.00		
210-MC-001 210-MC-001	216 PP 004 219 ZM 002	219-ZM-002	0 0	1 SMBS AREA SUMP PUMP 0 COPPER SULPHATE ROTARY VALVE	0.37	0.37 D	UTY VSD C	.92 8.2 .95 0.4	1.00 0.4	20%	0.80 1	10 0.00 00 0.31	0.09	0.30 0.91 0.33 0.91	0.29	0.30 2.50		0.0
210-MC-001 210-MC-001	219 FN 001 219 AG 001	219-FN-001 219-AG-001	1 0	0 COPPER SULPHATE ROTARY VALVE COOLING FAN 1 COPPER SULPHATE MIXING TANK AGITATOR	0.37	0.37 D	UTY DOL	.74 0.5 82 0.9	0.56 0.9		0.80 1	00 0.40	0.59	0.72 0.91 1.15 0.91	0.37	0.65 3.20		0 0
210-MC-001	219 PP 001	219-PP-001	0	0 COPPER SULPHATE DOSING PUMP 1	0.55	0.55 D	UTY VSD -	0.6		20%	0.80	00 0.44	2	0.91	0.40	3.52		0
210-MC-001 210-MC-001	222 PP 004 222 PP 005	222-PP-004 222-PP-005	• •	1 RAW WATER PUMP 1 0 RAW WATER PUMP 2	55 55	55 55 D	UTY DOL	.94 58.4 .94 58.4	0.79 73.9		0.80 1	00 46.71 00 46.71	36.25 36.25	59.13 0.91 59.13 0.91	42.63	53.96 373 53.96 373	.42	0 0
210-MC-001	223 PP 001	223-PP-001		1 PROCESS WATER PUMP 1 0 PROCESS WATER PIMP 2	110	110 D	UTY DOL C	.95 115.4 95 115.4	0.89 129.7		0.80	00 92.34	47.31	103.75 0.91	84.27	94.69 738 0.00 0.00	21	0 0
	228 PP 001	228-PP-001	. 0	D FIRE WATER JOCKEY PUMP / DIESEL PUMP CONTROLLER	1.1		UTY FDR	0.0	1.00 0.0		0.80	00 00	0.00	0.00 0.91	0.00	0.00 0.00	FED FROM REAGENTS / SERVICE L&SP	
210-MC-001	228 FP 002 232 ZM 001	228-PP-002 232-ZM-001	0 0	1 FIRE WATER POMP (ELECTRIC) 1 WATER TREATMENT PLANT	90 10+0.1	90 10.1 D	UTY FDR 1	.96 94.2 .00 10.1	1.00 10.1		0.80	00 8.08	46.72 0.00	88./0 0.91 8.08 0.91	68.80 7.37	7.37 64.6	50	
210-MC-001 210-MC-001	224 PP 001 224 PP 002	224-PP-001 224-PP-002	1 0	0 PLANT POTABLE WATER PUMP 1 0 PLANT POTABLE WATER PUMP 2	22	22 D	DRY DOL C	88 2.5 88 2.5	0.74 3.4		0.80 1	00 2:01	1.80	2.70 0.91	1.83	2.46 16.0	34 0	0.0
210-MC-001	225 PP 001	225-PP-001	. 0	1 GLAND WATER PUMP 1	5.5	5.5	UTY DOL	91 6.1	0.79		0.80	00 4.85	3.76	6.14 0.91	4.43	5.60 38.7	8	
210-MC-001	226 HX 001	226-HX-001	- 0	1 COOLING TOWER	0.0 11+15+15	26 0	UTY FDR 1	.00 26.0	1.00 26.0		0.80	00 20.80	0.00	20.80 0.91	18.98	18.98 166	29	0.0
INCL.	226 PP 001 226 PP 002	226-PP-001 226-PP-002		0 COOLING TOWER RECIRCULATION PUMP 1 0 COOLING TOWER RECIRCULATION PUMP 2	15	15 5.	DRV DOL C	.93 16.2 9.3 16.2	0.76 21.3		0.80	00 12.94	11.07	17.03 0.91 0 00 0.91	11.81	15.54 103 0.00 0.00	.49	00
210-MC-001	226 PP 003	226-PP-003	00	1 COOLING WATER PUMP 1	11	11	UTY DOL 0	92 11.9 a2 11.0	0.77 15.5		0.80	00 9.52	7.89	12.37 0.91	8.69 e.eo	11.29 76.1	4	0.0
10000017	226 PP 005	226-PP-005	0 0	0 COOLING WATER BLOCIDE DOSING PUMP	0.55	-	UTY FDR 1	0.0 0.0	1.00 0.0		0.80	00.00	00.0	0.00 0.91	0:00	0.00 0.00	FED FROM REAGENTS / SERVICE L&SP	0
	226 PP 006	226-PP-006	1	0 COOLING WATER ANTISCALANT DOSING PUMP	0.55		UTY FDR	0.0	1.00 0.0		0.80	00 00	0.00	0.00 0.91	0.00	0.00	FED FROM REAGENTS / SERVICE L&SP	0
210-MC-001	233 PP 001	233-PP-001		1 SEWAGE MACERATOR PUMP STATION 1 2 SEWAGE MACERATOR PUMP STATION 3	1.5	1.5 1.5	UTY FDR 1	00 1.5	1.00 1.5		0.80	00 1.20	0.00	1.20 0.91	1.10	1.10 9.56		0.0
210-MC-001	233 ZM 001	233-ZM-001	- 1		11	5	UTY FDR	00 11.0	1.00 11.0		0.80	00 8.80	0.00	8.80 0.91	8.03	8.03 70.3	55	0
210-MC-001	241 CO 001	241-CO-001	1	1 PLANT AIR COMPRESSOR 1	75	75 D	UTY FDR 1	.00 75.0	1.00 75.0		0.80	00 00	00.0	60.00 0.91	54.76	54.76 479	.67	0
210-MC-001	241 CO 002 241 DR 001	241-CO-002 241-DB-001		1 PLANT AIR COMPRESSOR 2 0 PLANT AIR DRVFR 1	75	75 S'	TDBY FDR 1	00 75.0	1.00 75.0		0.80 0.80	00 000	0.00	0.00 0.91	0.00	0.00 0.00	D FED FROM REAGENTS / SERVICE 1&SP	0 0
	241 DR 002	241-DR-002		0 PLANT AIR DRYER 2	2	- 00 F	DBY FDR	00 00	1.00 0.0		0.80	000	0000	0.00 0.91	0.00	0.00 0.00	FED FROM REAGENTS / SERVICE L&SP	0.0
210-MC-001	242 BL 002	242-BL-001	1		132	132 S'	DBY DOL C	.96 137.9	0.86 160.4		0.80	00 00 000	0.00	0.00 0.91	0.00	0.00 0.00		0.0
210-MC-001	242 BL 003	242-BL-003	-	0 CIL & CYANIDE AIR BLOWER 3	132	132 D	UTY DOL	.96 137.9	0.86 160.4		0.80	00 110.3	65.47	128.31 0.91	100.70	117.10 882	.15	0
210-MC-001	251 PP 001	251-PP-001	1 0	0 PLANT DIESEL DISTRIBUTION PUMP	0.75	0.75 D	UTY DOL C	.82 0.9	0.64 1.4		0.80 1	00 0.74	0.88	1.15 0.91	0.67	1.05 5.85		0
350-MC-002	351 PP 001	351-PP-001	1	0 TMF UNDERDRAINAGE PUMP	0.37	0.37 D	UTY DOL C	74 0.5	0.56 0.9		0.80	00 0.40	0.59	0.72 0.91	0.37	0.65 3.20		0
350-MC-002 350-MC-001	351 PP 002 353 PP 001	351-PP-002 353-PP-001	0 0	0 IIM- SEEPAGE PUMP 0 DECANT RETURN PUMP 1	115	0.37 D	UTY DOL C	.74 0.5 .95 120.7	0.89 0.9		0.80 1	00 0.40	0.59	0.72 0.91 108.47 0.91	0.3/ 88.10	98.99 771	<u>п</u>	0 0
220-MC-001	222 PP 001	222-PP-001	1	0 RAW WATER DAM PUMP	115	115 D	UTY DOL C	.96 119.8	0.86 139.3		0.80	00 95.83	56.86	111.43 0.91	87.46	10.1.70 766	.14	0
270-PF-001	270 PF 001	270-PF-001	0	0 POWER FACTOR CORRECTION (1.5MVAR)	0	0 0	UTY FDR	0.0 0.0	0.0		1.00	00.00	-1500.00	0.00 1.00	0.00	0.00		0
100 MAC 001	120 140	120 110 001	•															c
120-MC-001	120 DB 001	120-DB-001		1 FEED PREPARATION SWITCHROOM L&SP	40	40 D	UTY FDR 1	0.0 40.0	0.95 42.11		0.80	00 32.00	10.52	33.68 0.70	22.40	23.58 196	22	
1ZU-MC-UU1	120 DB 002	120-DB-002	0 0	1 FEED PREPARATION SWITCHROOM UPS	0 00	2		0.9	0.90 6.42		0.80	00 0:40	2.10	0./4 0.91	\$5. c	01.0	0	
120-MC-001	120 WR 001	120-WR-001	1	1 FEED PREPARATION 32A WELDING OUTLET	15	15 D	UTY FDR	.00 15.0	0.95 15.79		0.80	02 0.24	0.08	0.25 0.70	0.17	0.18 1.47		0
130-MC-001 130-MC-001	130 MC 001 130 DB 001	130-MC-001 130-DB-001	1 0	0 400V MOTOR CONTROL CENTRE INCOMER 1 MILLING / CIL SWITCHROOM L&SP DB	30	30	UTY FDR	00 30.0	0.95 31.58		0.80	50 12.00	3.94	12.63 0.70	8.40	8.84 73.5	225	00
130-MC-001 INCL	130 UP 001 130 DB 002	130-UP-001 130-DB-002	1 0	1 MILLING / CIL SWITCHROOM UPS 0 MILLING / CIL SWITCHROOM UPS DB	8	16 D	UTY FDR 1	.00 16.0	0.95 16.84		0.80	20 2.56	0.84	2.69 0.91	2.34	2.46 20.4	17	•
130-MC-001 130-MC-001	130 DB 011 130 DB 011	130-DB-011 130-DB-012	- F	1 MILLING / SURGE BIN AREA L&SP DB 1 CII AREA L&SP DB	30	30	UTY FDR 1	0.00 00.00	0.95 31.58		0.80	50 12.00 50 12.00	3.94	12.63 0.70	8.40 8.40	8.84 73.5 8.84 73.5	88	0.0
130-MC-001	130 DB 013	130-DB-013	1	1 GOLD ROOM L&SP DB	30	30	UTY FDR	00 30.0	0.95 31.58		0.80	50 12.00	3.94	12.63 0.70	8.40	8.84 73.5		0.0
130-MC-001	130 BC 001 130 WR 001	130-BC-001 130-MR-001	000	1 HV SWITCHROOM BATTER 1 HV SWITCHROARD BATTER 1 MILLING 220 MELLING OITT FT	5	2 2 4	UTY FDR	00 5.0	0.95 5.26		0.60	00 3.00 00 3.00	0.99	3.16 0.91 0.25 0.70	2.74	2.88 23.5	88	000
130-MC-001	130 WR 002	130-WR-002	1	1 CIL 32A WELDING OUTLET	15	15	UTY FDR	00 15.0	0.95 15.79		0.80	02 0.24	0.08	0.25 0.70	0.17	0.18 1.47		0.0
130-MC-001	130 WK 003	1.30-WK-003	-	1 ELUTION 32A WELDING OUTLET	61	2		0.cl 00.	67'CL 06'0		0.80	0.24	0.08	0/.0 62.0	11.0	0.18		5
210-MC-001 210-MC-001	210 MC 001 210 DB 001	210-MC-001 210-DB-001	000	0 400V MOTOR CONTROL CENTRE INCOMER 1 TALINGS SERVICES SWITCHROOM L&SP DB	40	40 0	UTY FDR	00 40.0	0.95 42.11		0.80	50 16.00	5.26	16.84 0.70	11.20	11.79 98.1	1	00
Z10-MC-001	210 0P 001 120 DB 002	210-0F-001 120-DB-002	0 0	1 IALINGS / SERVICES SWITCHROOM UPS 0 TALINGS / SERVICES SWITCHROOM UPS DB	xo «0	2		00 8:0	0.95 8.42		0.80	5.20	c0.1	3.3/ 0.91	7:87	3.07 20.5	98	0 .0
210-MC-001 210-MC-001	210 DB 011 210 DB 012	210-DB-011 210-DB-012	1 0 0	1 CYANIDE DESTRUCT / SMBS AREA L&SP DB 1 REAGENTS / SERVICES AREA L&SP DB	30	30	UTY FDR UTY FDR	0.05 00.0	0.95 31.58 0.95 31.58		0.80	50 12.00 50 12.00	3.94 3.94	12.63 0.70 12.63 0.70	8.40	8.84 73.5 8.84 73.5	88	0 0
210-MC-001 210-MC-001	210 DB 021 210 DB 022	210-DB-021 210-DB-022	0 0	1 PLANT WORKSHOP L&SP DB 1 REAGENTS STORE L&SP DB	30	30	UTY FDR 1 UTY FDR 1	00 30.0	0.95 31.58 0.95 31.58		0.80 1	00 24.00 24.00	7.89	25.26 0.70 25.26 0.70	16.80	17.68 147 17.68 147	21:	00
210-MC-001 210-MC-001	210 DB 023 210 WR 001	210-DB-023 210-WR-001	1 0	1 PLANT ADMIN L&SP DB 1 TAIL NGS 324 WEI DING CHITLET	30	30 D	UTY FDR 1	00 30.0	0.95 31.58		0.80 1	00 24.00 n24.00	7.89	25.26 0.70 0.25 0.70	16.80	17.68 147	17	0.0
210-MC-001	210 WR 002	210-WR-002	0	1 WATER SERVICES 32A WELDING OUTLET	15	15	UTY FDR	00 15.0	0.95 15.79		0.80	02 0.24	0.08	0.25 0.70	0.17	0.18 1.47		0
360-SB-001	360 SB 001	360-SB-001	1	1 PLANT ENTRY INFRASTRUCTURE	150	150 D	UTY FDR 1	.00 150.0	0.95 157.8		0.75 1	00 112.0	36.81	117.89 0.91	102.21	107.59 895	60	0
INCL			1 0	0 SECURITY GATEHOUSE & CHANGEROOM 0 METALLURGICAL OFFICE	30	30	UTY FDR 1	00 30.0	0.95 31.6 0.95 21.1		0.80 1	00 24.00 00 16.00	7.89 5.26	25.26 0.91 16.84 0.91	21.90	23.06 191 15.37 127	.87 .91	0.0
INCI INCI			1	0 LABORATORY 0 APEALICHTING	80	80	UTY FDR 1	0.08 0.0	0.95 84.2		0.80	00 64.00 50 8.00	21.04	67.37 0.91 8.42 0.91	58.41 7 20	61.48 511 7.60 63.0	.65 16	
370-SB-001	370 SB 001	370-SB-001	1		270	270 D	UTY FDR	00 270.0	0.95 284.2		0.77	00 208.0	68.37	2.442 0.91 2.18.95 0.91	189.82	199.82 166	2.86	
INCL			1 0	0 ADMINISTRATION BUILDING 0 CLINIC & EMERGENCY RESPONSE	50	50 D	UTY FDR 1	.00 50.0	0.95 26.3		0.80	00 20.00	6.57	4.2.11 0.91 2.1.05 0.91	36.50	38.43 319 19.21 159	.89	0.0
INCL			1 0	0 WAREHOUSE, WORKSHOP & OFFICE 0 PLANT LUNCHROOM	150 20	150 20	UTY FDR 1	0.0 150.0	0.95 157.9 0.95 21.1		0.80 1	00 120.0	5.26	126.32 0.91 16.84 0.91	109.51	115.28 959 15.37 12.7	34	0.0
INCL			1	0 PLANT ABLUTIONS	5	20	UTY FDR 1	00 5.0	0.95 5.3		0.80	00 4.00	1.31	4.21 0.91	3.65	3.84 31.9	88	
INCL	_		2	0 AREA LIGHTING	20	20	UTY HUK	00 20.0	0.95	_	0.80	50 8.00	2.63	8.42 0.91	1.30	7.69 7.69	96	0

TUL-0001-E-LL-0001_1-Load List.xism

Page: 5 of 10

Electrical Equipment Load List Detailed

	REV		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	S																		
AVENAGE	E NOTE	ar)																	
	GE AVERAG	(MWh/ye	3198.45	393.97	1007.31	767.47	383.74	127.91	127.91	95.93	63.96	31.98	6.40	63.96	63.96	63.96	883.01	98.11	
	E AVERA	(KVA)	384.34	47.34	12.1.04	92.22	46.11	15.37	15.37	11.53	7.69	3.84	0.77	7.69	7.69	7.69	112.00	12.44	
	AVERAG	(kw)	365.12	44.97	114.99	87.61	43.81	14.60	14.60	10.95	06.7	3.65	0.73	7.30	7.30	06.7	100.80	11.20	
	PLANT	AVAILABILIT	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.70	0.70	
	QW	(KVA)	421.14	51.87	132.63	101.05	50.53	16.84	16.84	12.63	8.42	4.21	0.84	8.42	8.42	8.42	160.00	17.78	
	9	(VAR)	31.50	6.20	1.41	1.55	5.78	26	26	.94	.63	31	26	.63	.63	.63	9.74	.75	
DEMAND	D (KW) N	<u>e</u>	00.08 1	9.28 1	26.00 4	5.00 3	3.00 1	5.00 5	5.00 5	2.00 3	00 2	00 1	80 0	00 2	00 2	00 2	44.00 6	3.00 7	
	MAND M	CTOR	00 44	00 44	10 11	00	00 44	00 1(00 1(10 11	0 8.	00 4.	0.	0 8.	0 8.	50 8.	1 0	00 1(
	CAL DE	STOR FA	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	0.5	1.0	1.0	
	MECHANI	LOAD FAC	0.72	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
	HARMONIC	LOADING FACTOR																	
3																			
NECTED FO	kva		588.53	64.8	165.8	126.3	63.2	21.1	21.1	15.8	10.5	5.3	52.6	10.5	10.5	21.1	200.00	22.22	
5	坮		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.90	0.90	
	BSORBED	8	59.1	1.6	57.5	20.0	0.0	0.0	0.0	5.0	0.0	0.	0.0	0.0	0.0	0.0	80.0	0.0	
	EFFICI A	ENCY K	1.00 5	1.00 6	1.00	1.00	1.00 0	1.00 2	1.00 2	1.00	1.00	1.00 5	1.00 5	1.00	1.00	1.00 2	1.00	1.00 2	
	DRIVE	түре	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	FDR	
	L DUTY		PUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	DUTY	PUTY	PUTY	
	INSTAL	ED (KW)	559.1	8.8	7.5	120	60	4	20	15	10	ю	50	10	10	20	180	20	
	AME PLATE	Ŵ	59.1	8	2	50	_		_	10	_		_		_	_	8	_	
	N	<u>¥</u>	55	8	12	12	60	4	20	15	10	5	50	10	10	20	18	20	
																		(
	EME EQUIPMENT NAME	RGE NCY	0 ACCOMMODATION CAMP	0 TYPE 1 ACCOMMODATION UNIT	0 TYPE 2 ACCOMMODATION UNIT	0 MESS HALL & KITCHEN	0 LAUNDRY	0 MANAGER ACCOMMODATION	0 RECREATION ROOM	0 STAFF RECREATION ROOM	0 ADMINISTRATION BUILDING	0 GATE HOUSE	0 FIRE WATER PLANT	0 WATER PLANT	0 SEWAGE TREATMENT PLANT	0 AREA LIGHTING	1 MINE SERVICES AREA (ESTIMATED LOAD)	1 EXPLOSIVES STORAGE (ESTIMATED LOAD	
	T S/BY	Y atv	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	TAG TOT	Б	-	2	21	-	-	in.	-	-	-	-	-	-	-	-	-	-	
	N EQUIPMENT		380-SB-001														450-SB-001	450-SB-002	
	EQUIPME	T NO.	001														001	002	
	EQUIPM	ENT ID	SB														SB	SB	
	WBS		380														450	450	
	CHBOARD		·B-001														B-001	B-002	
	SWIT		380-S	INCL	INCL	INCL	INCL	INCL	INCL	INCL	INCL	INCL	INCL	INCL	INCL	INCL	450-S	450-S	

EMERGENCY LOAD EQUIPMENT NAME

MAX DEMAND (kW) MAX DEMAND (KVA)

120-MC-001		42.1	44.1
120-DB-001	FEED PREPARATION SWITCHROOM L&SP	32.0	33.7
120-UP-001	FEED PREPARALION SWITCHROUM UPS	0.0	0.0
121-CN-001	PRIMARY CRUSHER MAINTENANCE HOIST	0.5	0.0
121-ZM-003	PRIMARY CRUSHER HYDRAULIC POWER UNIT	3.0	3.(
130-MC-001		531.4	642.(
130-BC-001	HV SWITCHBOARD BATTERY CHARGER	3.0	3.5
130-DB-001		12.0	12.6
130-DB-011 130-DB-012	CII AREA I &SP DR	12.0	12.6
130-DB-012 130-DB-013	GOLD ROOM L&SP DB	12.0	12.6
130-DB-021	CONTROL ROOM L&SP DB	4.0	4.2
130-UP-001	MILLING / CIL SWITCHROOM UPS	2.6	2.7
130-WR-001	MILLING 32A WELDING OUTLET	0.2	0.0
130-WR-002	CIL 32A WELDING OUTLET	0.2	0.0
130-WR-003	ELUTION 32A WELDING OUTLET	0.2	0.0
132-PP-010	MILLING AREA SUMP PUMP	2.6	3.
132-ZM-010		24.0	24.0
133-CN-001		1.0 1.0	0.7
162-AG-001	CILIANN FAGIATOR	07.0 67.6	78.7
162-AG-002 162-AG-003	CIL TANK 2 AGITATOR	02.0 62.6	78.2
162-AG-004	ICIL TANK 4 AGITATOR	62.6	78.2
162-AG-005	CIL TANK 5 AGITATOR	62.6	78.2
162-AG-006	CIL TANK 6 AGITATOR	62.6	78.2
162-CN-001	CIL AREA SERVICE CRANE	9.0	0.6
162-PP-007	CIL AREA SUMP PUMP 1	1.3	1.1
162-PP-008	CIL AREA SUMP PUMP 2	1.3	1.1
173-PP-005	ELUTION SUMP PUMP	0.7	0.0
174-KN-001	CARBON REGENERATION KILN	3.0	3.0
176-RC-001		29.5	35.7
1/6-KU-002		0.6Z	1.05
1//-CN-001		0.1	0
200-44-771		0.7	0.0
212-CN-001		0	
210-MC-001		544.1	619.3
183-AG-001	ICYANIDE DESTRUCTION TANK 1 AGITATOR	46.7	59.
183-AG-002	CYANIDE DESTRUCTION TANK 2 AGITATOR	46.7	59.
183-PP-001	CYANIDE DESTRUCTION SUMP PUMP	1.3	11
210-DB-001	TAILINGS / SERVICES SWITCHROOM L&SP DB	16.0	16.8
210-DB-011	CYANIDE DESTRUCT / SMBS AREA L&SP DB	12.0	12.6
210-DB-012	REAGENTS / SERVICES AREA L&SP DB	12.0	12.6
210-DB-021	PLANT WORKSHOP L&SP DB	24.0	25.3
210-DB-023		24.0	25.5
210-UP-001	TAILINGS / SERVICES SWITCHROOM UPS	3.2	3.4
210-WR-001	TAILINGS 32A WELDING OUTLET	0.2	0.0
210-WR-002	WATER SERVICES 32A WELDING OUTLET	0.2	0.0
211-AG-001	CYANIDE MIXING TANK AGITATOR	1.0	
211-CN-001	CYANIDE HOIST	0.1	Ö.
211-PP-005		0.7	0.0
214-AG-001		0.1	
216-AG-001	SMBS MIXING TANK AGITATOR	1.0	10
216-CN-001	SMBS HOIST	0.1	Ö
216-PP-004	SMBS AREA SUMP PUMP	0.7	0.0
219-AG-001	COPPER SULPHATE MIXING TANK AGITATOR	0.7	1.2
TUL-0001-E-LL-0001_1	-Load List.xlsm		

222-PP-004	RAW WATER PUMP 1	46.7	59.1
223-PP-001	PROCESS WATER PUMP 1	92.3	103.8
225-PP-001	GLAND WATER PUMP 1	4.9	6.1
226-HX-001	COOLING TOWER	20.8	20.8
226-PP-003	COOLING WATER PUMP 1	9.5	12.4
228-PP-002	FIRE WATER PUMP (ELECTRIC)	75.4	88.7
232-ZM-001	WATER TREATMENT PLANT	8.1	8.1
233-PP-001	SEWAGE MACERATOR PUMP STATION 1	1.2	1.2
233-ZM-001	SEWAGE TREATMENT PLANT	8.8	8.8
241-CO-001	PLANT AIR COMPRESSOR 1	0.03	60.0
241-CO-002	PLANT AIR COMPRESSOR 2	0.0	0.0
350-SB-001		2.4	2.4
233-PP-002	SEWAGE MACERATOR PUMP STATION 2	1.2	1.2
450-SB-001		145.2	161.2
450-SB-001	MINE SERVICES AREA (ESTIMATED LOAD)	144.0	160.0
450-SB-002		16.0	17.8
450-SB-002	EXPLOSIVES STORAGE (ESTIMATED LOAD)	16.0	17.8
360-SB-001		112.0	117.9
360-SB-001	PLANT ENTRY INFRASTRUCTURE	112.0	117.9
370-SB-001		208.0	218.9
370-SB-001	PLANT INFRASTRUCTURE	208.0	218.9
Grand Total		1602.3	1825.3
Expected Diversity (N	ot all loads will be used on blackout)		0.0
Proposed Generator d	Capacity (kVA)		2000
Utilisation			82.14%

KEFI Minerals Ethiopia PLC Tulu Kapi Gold Project

Electrical Equipment Load List Definitions

Mu otricomic	Monocolda antina de acadimente
Nameplate KW	
Connected load	Input power required to obtain an output power equal to the nameplate rating of each item of equipment
	Connected load kW = Nameplate kW + Efficiency Connected load kVA = Connected load kW + Power factor
Load factor	Represents the portion of the nameplate rating that is required by the load under normal operating conditions
Demand factor	The demand factor allows for the period which the equipment operates on its normal schedule, i.e. continuously (demand factor =1.00), intermittently (demand factor =0.02) or only operates when the plant is shutdown (demand factor = 0.00). This 1 modifies the equipment's power demand in the total maximum demand calculation.
Maximum demand	The amount of power required from the electrical supply system to serve the load. The ½ hour maximum demand kW are used in the calculation of plant maximum demand.
	Maximum demand kW = Connected load x Load factor Maximum demand kVAr = Maximum demand kW x Tan (cos¹ pf) where pf is the power factor Maximum demand kVA = √((Maximum demand kV)² + (Maximum demand kVAr)²)
Operating factor	The proportion of time which each item of equipment operates per day. The operating factor takes into account the plant availability.
Average power	Total power consumed by each item of equipment over one year and calculated in MWhours per year. The 24 hour maximum demand kW are used in the calculation of average power.
	WWhyear = Maximum demand kW x 10 ⁻³ x operating factor x 24 x 365

KEFI Minerals Ethiopia PLC Tulu Kapi Gold Project

Electrical Equipment Load List Source Data

TOSHIBA MOTOR PERFORMANCE DATA (415V, 50Hz, 4 POLE) - PREMIUM EFFICIENCY

OUTPUT (KW)	EFFICIENCY (%) @ 75% LOAD	EFFICIENCY (%) @ FULL LOAD	POWER FACTOR AT 75% LOAD	POWER FACTOR AT FULL LOAD
0.18	63.0%	63.5%	0.61	0.7
0.25	69.0%	72.7%	0.67	0.71
0.37	73.9%	75.5%	0.56	0.65
0.55	79.4%	80.4%	0.62	0.72
0.75	81.5%	82.2%	0.64	0.73
1.10	85.5%	84.7%	0.69	0.77
1.50	87.1%	86.2%	0.66	0.74
2.20	87.7%	87.1%	0.74	0.81
3.00	87.8%	87.2%	0.74	0.81
4.00	88.5%	88.3%	0.85	0.8
5.50	90.7%	90.5%	0.79	0.83
7.50	91.5%	91.1%	0.73	0.78
11.00	92.4%	92.3%	0.77	0.81
15.00	92.7%	92.5%	0.76	0.81
18.50	93.8%	93.6%	0.77	0.8
22.00	93.7%	94.1%	0.74	0.79
30.00	94.0%	94.1%	0.82	0.85
37.00	94.5%	94.6%	0.75	0.8
45.00	95.3%	95.1%	0.80	0.82
55.00	94.2%	94.4%	0.79	0.83
75.00	95.9%	95.6%	0.80	0.84
90.00	95.5%	95.6%	0.85	0.87
110.00	95.3%	95.3%	0.89	0.91
132.00	95.7%	95.5%	0.86	0.86
150.00	95.7%	95.5%	0.89	0.89
185.00	94.9%	95.0%	0.86	0.88
200.00	95.1%	95.1%	0.88	0.87
220.00	94.8%	94.8%	0.85	0.87
250.00	94.4%	94.5%	0.84	0.86
280.00	94.9%	94.9%	0.82	0.85
355.00	95.5%	95.3%	0.89	0.9

0.18W IS TAKEN FROM WEG HIGH EFFICIENCY E3 CATALOGUE (PAGE 25) 0.25KW IS TAKEN FROM WEG HIGH EFFICIENCY E3 CATALOGUE (PAGE 25)

OUTPUT (KW) EFFICIEN 0.37 94.4 0.37 94.4 0.37 94.4 0.75 94.4 1.50 95.6 3.00 96.5 3.00 96.5 4.00 96.6 5.50 96.6 5.50 96.7 11.00 97.1 15.00 96.1 37.00 96.1 37.00 96.1 37.00 96.1 18.50 97.1 18.50 97.1 37.00 96.1 37.00 96.1 18.50 97.1 13.000 96.1 11.000 97.1 12.00 97.1 132.00 97.1 132.00 97.1 132.00 97.1 132.00 97.1 160.00 97.1 160.00 97.1 160.00 97.1 160.00 97.1	ICY (%) @ LOAD .5%	DISPLACEMENT
0.37 94. 0.75 94. 1.50 95. 2.20 96. 3.00 96. 3.00 96. 4.00 96. 5.50 97. 11.00 97. 15.00 96. 15.00 96. 37.00 96. 37.00 96. 37.00 96. 37.00 96. 37.00 96. 37.00 96. 37.00 96. 37.00 97. 18.50 97. 10.00 97. 110.00 97. 12.00 97. 110.00 97. 110.00 97. 110.00 97. 160.00 97. 160.00 97. 160.00 97. 160.00 97. 160.00 97. 160.00 97. 160.0	.5%	POWER FACTOR AT FULL LOAD
0.75 94.1 1.50 95.3 2.20 96.3 3.00 96.3 3.00 96.3 4.00 96.4 4.00 96.4 5.50 96.4 5.50 96.4 5.50 97.2 11.00 97.3 12.00 97.4 18.50 97.4 18.50 97.4 18.50 97.4 18.50 97.4 18.50 97.4 18.50 97.4 18.50 97.4 110.00 97.4 122.00 97.4 132.00 97.4 110.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4	707	966.0
1.50 95. 2.20 96. 3.00 96. 3.00 96. 4.00 96. 5.50 96. 7.50 97. 11.00 97. 15.00 97. 15.00 97. 18.50 96. 30.00 96. 37.00 96. 37.00 96. 37.00 97. 18.50 97. 18.50 97. 18.50 97. 18.50 97. 18.50 97. 18.50 97. 22.00 97. 18.50 97. 20.00 97. 110.00 97. 122.00 97. 90.00 97. 110.00 97. 160.00 97. 160.00 97. 200.00 97.	°.c.	966.0
2.20 96.3 3.00 96.3 3.00 96.4 4.00 96.4 5.50 97.3 7.50 97.4 11.00 97.4 18.50 97.4 18.50 97.4 18.50 96.4 30.00 96.4 37.00 96.4 37.00 96.4 37.00 96.4 110.00 97.4 122.00 97.4 132.00 97.4 160.00 97.4 160.00 97.4 200.00 97.4 160.00 97.4 160.00 97.4	%6.	0.995
3.00 96. 4.00 96. 5.50 96. 5.50 97. 7.50 97. 11.00 97. 11.00 97. 11.00 97. 11.00 97. 18.50 97. 37.00 96. 37.00 96. 37.00 96. 37.00 96. 37.00 97. 55.00 97. 110.00 97. 122.00 97. 122.00 97. 110.00 97. 122.00 97. 122.00 97. 122.00 97. 122.00 97. 160.00 97. 200.00 97. 200.00 97. 200.00 97.	.2%	0.995
4.00 96. 5.50 96. 7.50 97.3 11.00 97.4 15.00 97.4 15.00 97.4 18.50 96.4 37.00 96.4 37.00 96.4 37.00 96.7 37.00 96.7 37.00 96.7 37.00 97.1 10.00 97.1 122.00 97.1 122.00 97.1 132.00 97.1 160.00 97.1 200.00 97.1 200.00 97.1 200.00 97.1 200.00 97.1	.3%	1997
5.50 96.3 7.50 97.3 11.00 97.3 15.00 97.4 18.50 97.4 22.00 96.8 30.00 96.3 37.00 96.3 37.00 96.3 37.00 96.3 37.00 96.3 37.00 96.3 37.00 97.4 110.00 97.4 122.00 97.4 122.00 97.4 110.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4	.5%	0.994
7.50 97.3 11.00 97.3 15.00 97.4 15.00 97.4 18.50 97.4 22.00 96.3 30.00 96.3 37.00 96.3 37.00 96.3 37.00 96.3 45.00 97.4 10.00 97.4 110.00 97.4 122.00 97.4 122.00 97.4 122.00 97.4 122.00 97.4 122.00 97.4 122.00 97.4 122.00 97.4 110.00 97.4 110.00 97.4	.9%	866.0
11.00 97.3 15.00 97.4 18.50 97.4 18.50 97.4 22.00 96.4 30.00 96.4 37.00 96.4 37.00 96.4 45.00 97.4 97.00 97.4 1000 97.4 110.00 97.4 152.00 97.4 122.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4	.2%	0.994
15.00 97.4 18.50 97.4 22.00 96.4 30.00 96.4 37.00 96.4 37.00 96.4 45.00 97.4 55.00 97.4 10.00 97.4 110.00 97.4 160.00 97.4 200.00 97.4 160.00 97.4 200.00 97.4	.2%	0.995
18.50 97,4 22.00 96,4 30.00 96,4 37.00 96,3 37.00 96,3 37.00 96,3 37.00 96,3 37.00 96,3 37.00 97,3 55.00 97,3 75.00 97,1 10.00 97,1 110.00 97,1 122.00 97,1 122.00 97,1 200.00 97,1 200.00 97,1	.5%	0.994
22.00 96.4 30.00 96.4 37.00 96.4 37.00 96.5 45.00 97.4 55.00 97.4 75.00 97.4 110.00 97.4 110.00 97.4 122.00 97.4 200.00 97.4 200.00 97.4	.4%	0.997
30.00 96.3 37.00 96.3 45.00 97.3 45.00 97.3 55.00 97.3 55.00 97.4 10.00 97.4 110.00 97.4 132.00 97.4 160.00 97.4 160.00 97.4 160.00 97.4	.8%	0.995
37.00 96. 45.00 97. 55.00 97. 55.00 97. 75.00 97. 90.00 97. 110.00 97. 132.00 97. 160.00 97. 200.00 97.	.8%	966.0
45.00 97. 55.00 97. 75.00 97. 90.00 97. 110.00 97. 132.00 97. 160.00 97. 200.00 97.	.9%	0.996
55.00 97.3 75.00 97.4 90.00 97.4 110.00 97.4 132.00 97.4 160.00 97.5 200.00 97.5	.1%	0.993
75.00 97.0 90.00 97.4 110.00 97.4 132.00 97.4 160.00 97.4 200.00 97.4	.2%	0.994
90.00 97.4 110.00 97.4 132.00 97.4 160.00 97.4 200.00 97.4	.0%	0.981
110.00 97.4 132.00 97.4 160.00 97.7 200.00 97.4	.4%	0.999
132.00 97.0 160.00 97.0 200.00 97.0	.6%	0.999
160.00 97.1 200.00 97.1	.6%	0.999
200.00 97.0	.7%	0.999
	.6%	0.999
250.00 97.:	.7%	0.998
280.00 97.	.6%	0.998
315.00 97.	.7%	0.997
400.00 97.	.7%	0.996
500.00 97.8	.8%	0.995

SITE GENERAL LAYOUT

APPENDIX 6.6

MILL SIZING

Email Report No.7743 Rev 1

August 2016

EMAIL TRANSMISSION						
Company:	Lycopodium Minerals	Date:	4 August 2016			
То:	Geoff Duckworth	Email:	Geoff.Duckworth@Lycopodium.com.au			
CC:	Bruno Ruggiero	Email:	Bruno.ruggiero@Lycopodium.com.au			
From:	Fred Kock	No. Pages:	8 (including this cover page)			
Tulu Kapi Project						
Revised Mill Size						

Geoff,

Attached please find the latest modelling incorporating the data derived from applying specific grinding energies at various grind sizes into the mine model.

Yours sincerely,

ORWAY MINERAL CONSULTANTS (WA) PTY LTD

Fred Kock

Principal Metallurgist

LYCOPODIUM MINERALS

TULU KAPI MILL SIZE

1.0 INTRODUCTION

Geoff Duckworth, representing Lycopodium Minerals, requested OMC to provide a mill size for the Tulu Kapi Project in Ethiopia.

To conduct the modelling, OMC provided specific energy requirements for each comminution sample tested at P_{80} grind sizes of 75, 106, 125 and 150 μ m to enable the resource modelling to better account for the hardness profile.

The OMC Power Model for grinding circuit modelling and mill sizing is based on a consideration of the total power involved in the comminution process¹.

By applying the specific energy at each comminution sample location a more representative hardness profile was generated. Note the following detail from the Mining Consultant: *To generate these values, the Specific Energy values for samples tested by OMC were coded into the resource block model, based on their spatial location within deposit. The coding was carried out using a <u>simple nearest neighbour technique</u> so there is no transition between zones of hardness. The block model was then run through the mine schedule process and the values were output (along with the processing schedule) for each time period on a tonnes weighted average basis.*

The specific grinding energy that was provided to the resource consultants is summarised in Table 1-1. The energy estimation is based on a typical SAG milling approach (10% ball charge, 75% Nc speed).

¹ OMC POWER-BASED COMMINUTION CALCULATIONS FOR DESIGN, MODELLING AND CIRCUIT OPTIMIZATION - P. Scinto, A. Festa, B. Putland – CMP Conference

			Axb	BWi	Specific	Specific Energy	Specific Energy	Specific Energy
					Energy	to	to	to
Sample	Hole	From-To		(kWh/t)	to 75µm (kWh/t)	106µm (kWh/t)	125µm (kWh/t)	150µm (kWh/t)
				17.6	16.0	13.1	11.8	10.5
PFS 11	TKBH41	215.9 - 229.5					_	
PFS 16	TKBH43	68.4-79.9	253	17.6	15.9	13.0	11.8	10.5
PFS 19	TKBH41	281.9-306.9		17.9	16.1	13.1	11.8	10.5
PFS 27	TKBH38	244.0-259.9		19.4	17.3	14.0	12.6	11.2
	TKMT003	8.35-16.55						
BFS Ox	TKMT004	14.37-15.9	112	15.5	16.6	14.1	13.0	11.9
	TKMT004	22.32-25.05						
Ox Variability V4	TKMT005	19.2-20.75	253	9.4	9.9	8.4	7.7	7.1
Ox Variability V9	SAP Zone 2 (SP201 - SP212)		357	12.1	11.9	9.9	9.0	8.2
Ox Variability V10	SAP Zone 3 (SP301 - SP310)		749	6.8	7.7	6.5	6.0	5.4
BFS Fresh Lode 1	TKMT004	25.05 - 63.7	82	15.5	18.0	15.5	14.4	13.3
	TKMT001	385.62-395.23		18.0	25.2	22.2	21.0	19.7
BFS Fresh Lode 3	TKMT001	418.15-424.6	39					
	TKMT001	425.08-457						
Fresh Comminution Variability 1	Refer OMC Report no 8865		72	15.0	18.4	15.9	14.9	13.8
Fresh Comminution Variability 2	Refer OMC Report no 8865		48	17.7	23.0	20.1	18.9	17.6
Fresh Comminution Variability 3	Refer OMC Report no 8865		39	17.8	24.9	22.0	20.7	19.5
Fresh Comminution Variability 4	Refer OMC Report no 8865		31	19.1	28.2	25.1	23.8	22.6
Fresh Comminution Variability 5	Refer OMC Report no 8865		46	15.0	21.3	18.8	17.8	16.7

Table 1-1 Comminution Specific Energies Provided to Resource Consultants

2.0 DESIGN CRITERIA

The design criteria used for mill selection is summarised in Table 2-1

Parameter	Units	Criteria	Source
Production	Mtpa	1.5	Client
Grinding Circuit			
Availability	%	91.3	Client
Annual Operating Hours	h	8,000	Client
Throughput	t/h	187.5	Client
Final Product Size, P ₈₀	μm	125 - 150	Client
Design Specific Energy	kWh/t	17.7	85 th Percentile of Monthly Blends
Testwork			
BWi	kWh/t	15.5	Derived from design energy
A		78.8	Derived from design energy
b		0.6	Derived from design energy
Axb		45.7	Derived from design energy
Ai	g	0.384	Weighted Average
SG		2.76	Weighted Average

Table 2-1Design Criteria

The design point is based on the 85th percentile of the modelled monthly specific energies to achieve a product size of 80% passing 125µm to 150µm throughout the project life. The design testwork was back calculated to reflect the design specific energy.

Targeting a grind size in the region of 125 to 150 µm for primary ore, depending on the blend of primary ore types presented to the process plant, has a number of advantages:

- Controlling cyclone overflow density in a process plant with no pre-leach thickening often means classification efficiency is compromised to ensure leach feed density is maintained. It is important to maintain leach feed density when processing 'clean' primary ores because suspending coarse particles (>250 µm) becomes problematic. CIL tanks can potentially build up with coarse particles which are difficult to remove from tanks without taking tanks off line and manually cleaning out. Targeting a grind P₈₀ in the region of 125 to 150 µm will reduce the proportion of particles in the size region that may cause suspension problems and allow for some variation in classification efficiency and the general ability of the plant operators to maintain the target grind size.
- The process plant will be designed to have a hydraulic capacity capable of handling a throughput rate of 1.7 Mtpa when treating oxide ore. The target primary ore treatment rate is 1.5 Mtpa, however, depending on the ore locations that make up the primary ore blends and the classification efficiency and suspension characteristics of coarse ore particles it may be possible to marginally increase design primary ore throughput rates during some periods. This may have project cash flow benefits or allow overall tonnages treated annually to meet budget if throughput is reduced below design during periods of higher than design ore hardness.

The resource modelling output, showing the monthly specific energies required at various grind sizes compared to the design point are shown in Figure 2-1.

Figure 2-1 Energy requirements at various grind sizes

The feed contribution of each ore type is shown in Figure 2-2. Please note: the reference to SAP, FRESH and HARD are the original DFS hardness classification used (i.e. using the 1600 mRL FRESH / HARD boundary) and is not directly comparable to the hardness profile as shown in Figure 2-1.

Figure 2-2 Feed Blend (July 2016)

3.0 MILL SELECTION

The mill selection is shown in Table 3-1. Two scenarios are shown, namely the mill conditions to achieve the design of 17.7kWh/t pinion power, and also the turndown required to achieve the average specific energy for the first twelve months of operation, namely 13.0kWh/t.

Parameter	Units	Design	Turndown
Mill Type Number of Mills Inside Shell Diameter Effective Grinding Length (EGL) L:D Ratio Imperial Measurements	- m m - ft x ft	SS SAG Mill 1 6.70 6.20 0.93 22 x 20.3	SS SAG Mill 1 6.70 6.20 0.93 22 x 20.3
Mill Discharge Type Mill Discharge Percent Solids Liner Thickness – new Mill Speed Range Mill Speed – Duty Mill Speed – Duty	- mm - %Nc rpm	Grate 75 100 60-80 75 12.5	Grate 75 100 60-80 60 10.0
Ball Charge – Duty Ball Charge – Maximum Total Load – Duty Total Load – Maximum	% % %	11 16 25 35	12 16 17 35
Specific Energy	kWh/t	17.7	13.0
Pinion Power – Duty Pinion Power – Maximum Recommended Installed Power*	kW kW kW	3,320 4,360 4,600	2,440 4,360 4,600

Table 3-1SS SAG Mill Sizes

*SAG mill motor sized at 80% Nc, 16% ball charge, 35% total load and 95% motor efficiency

The selected mill provides some contingency during the early years of operation. Indications are that a pebble crusher is not required in the circuit, though it may be beneficial in the later years of the project when processing the harder ore. As such OMC would strongly recommend including the pebble crusher in the layout design so that it can be retrofitted later.

A 22' mill diameter is recommended as a minimum to limit slurry pooling. The use of a 24' mill could be considered as a cost effective option if a suitable design is available (from an engineering and mill vendor perspective).

4.0 RECOMMENDATION

The approach of linking the comminution samples to the resource model is not OMC's typical design basis. Allowing for some extra contingency is thus prudent since the design point is effectively a weighted average

value. OMC cannot comment on how well the hardness profile represents the overall resource as there are only 15 samples on which to base the hardness profile.

In order to ensure all parties understand and quantify the risk, the individual sample energy requirements to achieve a product size P_{80} of 125µm and 150µm are shown in relation to the nominal and maximum operating conditions of the selected mill. It is evident from Figure 4-1 that when significant amounts of the Hard Fresh ore is processed, that the mill could struggle. Blend management is therefore of utmost importance.

5.0 DISCLAIMER

The material and advice produced by OMC as contained in this report is for the internal use of the client only and OMC takes no responsibility and accepts no liability for the use of or reliance upon any such material or advice by any third party. Should a third party suffer any loss or damage as a result of using or relying upon such material or advice, OMC shall in no way be liable to the client or the third party.

6.0 STANDARD WARRANTY

Orway Mineral Consultants warrants that it will perform the Services in accordance with standards of care and diligence normally practised by recognised engineering consulting firms in performing services of a similar nature. If during the one (1) year period following completion or termination of the Services, it is shown that there is error in the report or Services as a result of those standards not having been met, and you have promptly notified Orway Mineral Consultants in writing of such error, Orway Mineral Consultants shall perform on a reimbursable basis but without any additional fees, such corrective services as may be necessary within the original scope of Orway Mineral Consultants Services to remedy such error. This warranty shall constitute Orway Mineral Consultants sole liability with respect to the Services or any information or report supplied to you. Acceptance of our report or use of any of the Services or information shall constitute a release and agreement to defend and indemnify Orway Mineral Consultants from and against all other liabilities arising.

7.0 OWNERSHIP

This report, together with all intellectual property contained or embodied therein remains the property of Orway Mineral Consultants, subject only to an express written agreement with the client to the contrary.

Prepared by ORWAY MINERAL CONSULTANTS (WA) PTY LTD:

Fred Kock

Principal Metallurgist

Countersigned by:

Brian Putland

Principal Metallurgist

APPENDIX 7.1

TSF AND WATER DAM - FIGURES

KEFI MINERALS PLC TULU KAPI GOLD PROJECT

TAILINGS STORAGE FACILITY AND WATER MANAGEMENT SYSTEM – LYCOPODIUM REPORT SUMMARY

PREPARED FOR:

Lycopodium Minerals Pty Ltd Level 5 1 Adelaide Terrace East Perth WA 6004

PREPARED BY:

Knight Piésold Pty Limited Level 1, 184 Adelaide Terrace East Perth, WA 6004, AUSTRALIA p. +61 8 9223 6300 • f. +61 8 9223 6399

PE402-00012/02 Rev C April, 2017 DOCUMENT CONTROL PAGE

KEFI MINERALS PLC

TULU KAPI GOLD PROJECT

TAILINGS STORAGE FACILITY AND

WATER MANAGEMENT SYSTEM

KP Job No. PE402-00012/04

KP Report No.: PE402-00012/02

CONTRACT

PROJECT CONTRACT

DOCUMENT INFORMATION					
REV	DESCRIPTION	PREPARED	REVIEW	KNIGHTPIESOLD APPROVAL	DATE
A	Issued as Draft	_m PM	DJTM	DJTM	0903/2017
		PLV	DJTM	DJTM	0000000000000
в	Revised Based on Changed	PLV	DJTM	ОЛТМ	2803/2017
	Throughput Values	PLV	DJTM	DJTM	
с	Revised Based on Changed	PN	on AM	AM	12/04/2017
-	Throughput Values	PDM	I PLV	DJTM	

	DOCUMENT DISTRIBUTION					
REV	DESTINATION	HARD COPY	ELECTRONIC COPY			
A	KEFI MINERALS PLC	0	1			
В	KEFI MINERALS PLC	0	1			
с	KEFI MINERALS PLC	0	1			

1.

CONTENTS

INT	RODUCTION	1
1.1	DESIGN CRITERIA AND OBJECTIVES	1
	1.1.1 Design Objectives	1
	1.1.2 Design Criteria	1
1.2	CLIMATE DATA	2
1.3	GEOTECHNICAL CONDITIONS	3
1.4	TAILINGS CHARACTERISTICS	4
	1.4.1 Physical Characteristics	4
	1.4.2 Geochemical Characteristics	4
1.5	TAILINGS STORAGE FACILITY DESIGN	5
	1.5.1 Site Selection	5
	1.5.2 General Description	5
	1.5.3 Embankment Construction	5
	1.5.4 Seepage Control	6
	1.5.5 Decant System	7
	1.5.6 Emergency Spillway	7
	1.5.7 Tailings Deposition	8
	1.5.8 Stability	8
	1.5.9 Dam Break	8
	1.5.10 Closure and Rehabilitation	9
1.6	WATER MANAGEMENT	9
	1.6.1 General	9
	1.6.2 TSF Water Balance	9
	1.6.3 Water Storage and Diversion	10
	1.6.4 Water Dams	11
	1.6.5 Diversion Channels	11
	1.6.6 Water Supply	12
1.7		12
1.8	EXTERNAL WATER SOURCES	12

FIGURES

PAGE

1. INTRODUCTION

1.1 DESIGN CRITERIA AND OBJECTIVES

1.1.1 Design Objectives

The design objectives for the Tailings Storage Facility (TSF) are as follows:

- Permanent and secure containment of all solid waste materials.
- Maximisation of tailings densities using sub-aerial deposition.
- Removal and reuse of free water.
- Reduction of seepage.
- Containment of design storm events within the TSF.
- Ease of operation.
- Rapid and effective rehabilitation.

The design objectives for the water management and sediment control system are as follows:

- Diversion of rainfall runoff from catchment areas upstream of the TSF, around site infrastructure to discharge off site downstream of the project.
- Supply of raw water for plant use.
- Reduction of sediment-laden runoff from the site infrastructure using source control measures, to reduce sediment loading.

1.1.2 Design Criteria

1.1.2.1 Consequence Category

Population at Risk

Based on the preliminary dam break assessment the population at risk (PAR) falls in the 1 to 10 category.

Severity Level

The severity level for a dam break is assessed as Medium to Major.

Consequence Category

Based on ANCOLD "Guidelines on Tailings Dams – Planning, Design, Construction, Operation and Closure" May 2012 the consequence category for the facility is rated as 'High C'.

1.1.2.2 Design Criteria

Based on the Consequence Category the following design criteria were used:

- Extreme Storm Storage Allowance: Maximum of a 1:100 AEP 72 hour or a 1 in 100 Wet Year Sequence.
- Freeboard: 1:10 AEP Wind plus 0.5 m.
- Design Spillway Floods: PMF.
- Earthquake: OBE = 1 in 1,000 yr; MDE = 1:10,000 yr.

1.2 CLIMATE DATA

Monthly Data

The climate data used was based on processed rainfall data from Gore and evaporation data from Peens & Associates "Tulu Kapi Tailings Storage Facility Baseline Hydrological Assessment", February 2012. The data are summarised in Table 1.1.

 \wedge

Month		Evaporation (Lake equivalent)		
	Average	1 in 100 Wet	1 in 100 Dry	
		Year	Year	(mm)
January	14.3	17.6	19.0	136
February	42.9	2.5	24.8	155
March	42.9	179.0	20.7	156
April	31.8	36.8	14.9	160
May	155.0	314.5	191.3	140
June	275 0	372.2	192.1	104
July	161.4	384.7	104.3	69
August	290.9	380.6	188.0	65
September	275.0	514.4	214.5	71
October	290.1	215.0	136.6	111
November	86.6	297.8	41.4	121
December	29.4	30.1	51.3	131
Total	1,695.3	2,745.2	1,198.9	1,419

Table 1.1: Monthly Climate Data

Storm Data

The storm data analysis was based on daily precipitation data from Gore. After removal of errors and outliers in the data the following storm values (Table 1.2) were used.

Duration	Frequency (Annual Recurrence Interval)					
	10	50	100	500	1,000	
6	73	92	101	123	134	
12	88	111	122	148	160	
24	104	132	144	176	191	
72	140	182	200	241	261	

Table 1.2: Storm Events

For the storm capacity in the TSF a conservative storm rainfall of 300 mm was used (greater than the 1 in 1,000 years / 72 hr event).

1.3 GEOTECHNICAL CONDITIONS

The geotechnical conditions in the TSF and WD area were assessed based on previous investigations and the following conclusions drawn:

- The scope of work comprised drilling of 6 boreholes to depths of between 12 m and 30 m into bedrock, excavation of 58 test pits, and laboratory testing of selected samples.
- The sub-surface profile within the TSF and WD footprints comprises a variable thickness of laterite and saprolite soils overlying bedrock. Minimal depths of soil overburden were encountered in the valley floors, increasing to upwards of 25 m across the basin areas. The soils comprise red brown or orange brown predominantly medium to high plasticity clayey silt. These soils are firm to stiff becoming stiff to hard in consistency with depth and have low in situ permeability. Bedrock comprises very weak to weak weathered Diorite, becoming moderately strong with depth. At the WD site, an intersection of highly weathered, very weak Chlorite Schist was logged in borehole BH-5-03 between 8.2 m and 13.5 m depth as a sheared contact with a basic dyke.
- Monitoring data indicates that groundwater is located at between 2.4 m and 15 m in the TSF and WD area. Test pit excavations in proximity to watercourses encountered groundwater at a depth of approximately 1.0 m to 1.5 m indicating that near to the valley floors the groundwater level will correspond approximately with creek level.
- Laboratory testing data indicates that the near surface soils should not be susceptible to liquefaction.
- Substantial quantities of borrow material may be sourced from the laterite and saprolite clayey silt horizons which are present beneath the basin areas of both facilities. It is recommended that some depth of low permeability soil cover

should be left in place to mitigate potential seepage loss through the upper rock horizons.

• The ground conditions encountered at the proposed TSF and WD embankments should provide competent foundations for the facility embankments.

1.4 TAILINGS CHARACTERISTICS

1.4.1 Physical Characteristics

The following tailings characteristics were assumed for the design:

- Tailings SG 2.8 t/m³.
 P₈₀ 75 microns.
 Slurry %solids 40%.
 Initial Supernatant Release 48%.
- Final Dry Density of Tailings Mass 1.3 t/m³.

It is recommended that testing to determine the physical behaviour characteristics of the tailings is undertaken in the final design phase.

1.4.2 Geochemical Characteristics

Preliminary geochemical testing was undertaken and the following significant factors determined:

- The tailings has low sulphide content (<0.01%) and thus will be non-acid generating during the operational phase.
- The supernatant and seepage is expected to be neutral to alkaline with elevated concentrations of arsenic, selenium, antimony and molybdenum.
- Post closure potential elevated concentrations of iron and manganese may generate acidity when the seepage flow is exposed to oxygen.

The design conclusions based on the preliminary data are as follows:

- Seepage control measures will be required to limit seepage outflows.
- Storm capacity on the facility will need to be sufficient to provide adequate dilution prior to release.
- A cover will need to be placed over the tailings at closure to limit water and oxygen ingress.

It is recommended that an additional phase of geochemical testing on the tailings is undertaken.

1.5 TAILINGS STORAGE FACILITY DESIGN

1.5.1 Site Selection

A number of valleys within the current mine lease area were examined to assess the tailings storage potential (Figure 1.1). This indicated that the only valley with sufficient storage potential (within the lease boundaries) was the valley to the east of the plant area.

1.5.2 General Description

The facility will be constructed in the valley to the east of the plant site (Figure 1.2). The main embankment will be constructed at the northern end of the valley at a narrow section. The valley has three main branches and the embankment will enclose a total catchment of about 260 ha. In order to maintain the TSF as a 'water negative' facility two water dams (WD1 & WD2) will be constructed upstream of the tailings area. The water dams will divert water around the tailings area and also provide a raw water supply for the plant.

Tailings discharge will occur from the downstream (north) side of the two water dams and the eastern side of the tailings area with the tailings profile sloping down to the decant pond on the western side of the main embankment. The decant return will be pumped back to the plant for reuse in the process. It was assumed that tailings deposition commences in October 2019.

1.5.3 Embankment Construction

The main embankment will be a downstream multi zoned embankment constructed initially out of local borrow with mine waste providing the bulk of the future embankment raises.

The embankment zones will consist of an upstream erosion control layer consisting of a geotextile layer for Stage 1 replaced with rockfill for future stages when it becomes available from the pit; a low permeability (Zone A) upstream zone consisting of selected local borrow materials moisture conditioned and compacted as required to achieve a suitable low permeability and a downstream structural zone consisting of local borrow for Stage 1 and Run of Mine waste for future stages.

The embankment crest will be 8 m wide with an upstream slope of 1V:2.5H and a downstream slope of 1V:3H with nominal 5 m benches at 10 m height intervals (overall slope of 1V:3.5H). The embankment lifts will be a minimum of ~ 2 m height to ensure a downstream working platform width for fill placement of 15 m or more. Stage 1 Embankment Crest has been adjusted to ensure that should the tailings have a flatter slope than the selected design slope (1V:120H) there is sufficient storage capacity available.

The staging of the embankment as presented herein is based on providing 12 months capacity with each construction stage. The storage capacity is suitable if the plant is commissioned in March (allowing for Stage 2 to be constructed between November and February). If the plant is commissioned at any other time of the year then the storage capacity will need to be reviewed and potentially adjusted.

The embankment staging is provided in Table 1.3.

Year	Stage	Tonnage (Mt)	Months of Capacity	Crest RL (RLm)	Lift Height (m)
-1	1	1.43	12	1620.0	~25 m Max
1	2	1.70	12	1625.3	4.1
2	3	1.70	12	1630.0	4.7
3	4	1.7	12	1633.8	3.8
4	5	1.50	12	1637.1	3.2
5	6	1.50	12	1639.7	2.6
6	7	1.50	12	1642.1	2.4
7	8	1.50	12	1644.4	2.2
8	9	1.50	12	1646.3	1.9
9	10	1.36	11	1648.2	1.9
	Total	15.4	Final	1648.2	

Table 1.3: Embankment Staging

The embankment levels given are the minimum height required and it is viable to raise the embankment at a faster rate to suit mine waste production schedules.

To enhance the downstream stability of the embankment, drainage will be provided at the base of the valley from the back of the Zone A to the downstream toe.

1.5.4 Seepage Control

To reduce seepage losses a number of seepage control measures will be incorporated into the TSF design as follows:

- Cutoff Trench a cutoff trench will be constructed at the end of the Zone A to competent, low permeability foundation material (nominal 2 m depth).
- The base of the TSF area will be scarified and compacted to produce a low permeability soil liner. In areas with unsuitable material or exposed rock suitable material from elsewhere in the basin will be imported to form the low permeability soil liner.
- Underdrainage System an underdrainage system will be constructed in the area in front of the embankment to drain the base of the tailings adjacent to the

embankment and reduce water driving pressures into the underlying layers. This system will only commence operation when the area is covered by tailings.

- Underdrainage Collection Sump an underdrainage collection sump will be installed to collect the water from the underdrainage system.
- Decant System the decant system will be designed and operated to minimise the decant pond as much as practicable.
- Downstream Monitoring Bores the monitoring bores downstream of the embankment will be constructed so that they can be converted to pump out bores if required.

1.5.5 Decant System

The TSF decant system will be developed in two phases:

- Phase 1 will operate in Stage 1 when the rate of rise is high and will consist of a floating barge in the decant pond pumping return water back to the plant.
- Phase 2 will operate from Stage 2 and will consist of a decant tower on the west abutment adjacent to the main embankment. As the supernatant pond increases in elevation, additional towers will be constructed higher up the slope. Each tower will consist of a concrete base and 1.8 m diameter slotted precast concrete pipes. The towers will be surrounded by free draining rockfill. The collected supernatant will be pumped back to the plant. If required a pump booster station could be constructed on the access causeway to the decant tower.

1.5.6 Emergency Spillway

The TSF will be designed to hold the 1 in 100 wet year rainfall runoff and/or a 1 in 100 year 72 hr storm volume. Under nominal operating conditions with the TSF managed in accordance with standard operating procedures the available stormwater storage capacity will be in excess of the design storm volume and no discharge from the TSF is expected.

In the event of an extreme event greater than the design storm any rainfall and supernatant that cannot be stored on the facility will be discharged in a controlled manner via an emergency spillway. The operational spillway will be constructed around the east side of the TSF and will be designed for the PMF event.

A closure spillway will be constructed at the lowest point in the facility through the west abutment ensuring no ponding of rainfall on the facility surface post closure.

1.5.7 Tailings Deposition

The tailings delivery pipeline will be installed across WD1 and WD2 and then around the eastern side of the facility. A total of about 6 to 8 discharge points will be installed. A discharge pipeline will be extended down the valley to the top of the active tailings area. As the tailings extends up the valley the discharge pipeline will be shortened appropriately. This deposition approach will produce a sloping beach profile extending down towards the main embankment. Given the low seismicity of the site (0.02 to 0.05g) it is not anticipated that any tailings liquefaction or slumping will occur.

1.5.8 Stability

The stability analysis has not been redone for the current design. The following points should be noted:

- In the previous DFS with a part downstream / part upstream embankment the stability analysis using site material parameters and a downstream slope of 1V:3H indicated the embankment was stable. The current design is a fully downstream embankment with a flatter overall downstream slope of 1V:3.5H.
- In the previous DFS it was recommended that a drainage system was constructed in the downstream embankment zone to enhance stability. The current design has a downstream drainage system.
- The embankment has been relocated into the narrowest section of the valley. At its current location the 3D effects of the abutments will provide increased stability.

Based on these factors it is considered that the embankment should be inherently stable. A detailed stability analysis will be undertaken as part of the final design.

1.5.9 Dam Break

A dam break analysis is required for the TSF. The local river is about 9 km downstream of the TSF.

The overall slope from the TSF to the river is about 1V:70H. The gradient along the river is about 1V:400 to 450H. Thus it is anticipated that the tailings will flow down to the river as a slurry flow and then deposit along the river in both directions (Figure 1.3). Typically along the flow path directly downstream of the TSF houses are placed on top of the ridges and hills up to 30 to 50 m above the drainage path. Thus many of the dwellings may not be impacted by a dam break flow.

Based on this preliminary assessment about 1 to 10 people may be at risk in a dam break event.

1.5.10 Closure and Rehabilitation

The closure concepts for the facility will depend on the long term geochemical stability of the tailings and the post closure land use.

The tailings surface slopes down to the proposed closure spillway and thus minimal reshaping of the surface is required.

The cover will incorporate a compacted low permeability layer to reduce infiltration and oxygen ingress into the tailings post closure.

The top section of the cover will be designed to meet the post closure land use. For example if the area is to be returned to cropping the cover materials will need to be thick enough to prevent the roots of the crops from reaching the tailings surface. If other potential land uses are proposed the cover will need to be modified appropriately.

1.6 WATER MANAGEMENT

1.6.1 General

The water management around the TSF consists of two components:

- The management of water on the tailings facility; in particular developing a facility water management design that is water negative.
- Supply of raw water for use in the plant.

The overall approach was based on determining the minimum catchment size that would allow the TSF to remain water negative for different tailings areas and diverting the remaining water flows in such a way that the water is available for use in the plant.

1.6.2 TSF Water Balance

1.6.2.1 Catchment Diversion

The first step in the water balance work was to determine the sensitivity of the TSF Water Balance to catchment area. A simple annual water balance using typical parameters was developed and the results are summarised in Table 1.4.

Catchment Area	Tailings Area (ha) at which WB goes Water Positive
Full (Catch = 260.2 ha)	48
With WD1 (Catch = 210.5 ha)	56
With WD2 (Catch = 188.7 ha)	59
With WD1 and WD2 (Catch – 139.0 ha)	66.5

Table 1.4: Maximum Catchment for Water Negative Water Balance

The TSF footprint based on the modelling reaches a maximum of about 58 - 60 ha. So utilising both WD1 and WD2 should be sufficient to maintain a negative water balance.

1.6.2.2 Water Balance – Average Conditions

A monthly water balance was developed incorporating both the TSF and the diversion systems. Under average climatic conditions the pond reaches the minimum pond size in each dry season. The maximum pond size increases each year as the area of tailings expands (Figure 1.4).

The peak volume occurs in the last wet season of the operation where the pond reaches a maximum value of $557,200 \text{ m}^3$.

1.6.2.3 Water balance – 1 in 100 Wet Year

A 1 in 100 wet year was inserted (independently) into the model in each year as shown on Figure 1.4. The modelling indicates the pond increases significantly in the wet year but in the subsequent years returns back to the average pond configuration in approximately two years of average rainfall. The peak volume occurs from a wet sequence over the penultimate wet season of the operation where the pond reaches a maximum value of 1,377, 000 m³. The embankment levels as listed in Table 1.3 are primarily controlled by the 1 in 100 wet year pond volume as shown on Figure 1.5.

1.6.3 Water Storage and Diversion

1.6.3.1 Water Diversion

As shown on Figure 1.2 the area upstream of the TSF catchment area will be diverted. This will be achieved by constructing two water dams in the two valleys to the east of the plant site. Water Dam 1 (WD1) is in the valley directly below the plant site area. This storage will provide water back to the plant. Water Dam 2 (WD2) is in the next valley to the east.

Associated with the two water dams are three diversion channels:

- Diversion Channel 1 (DC1) from WD1 northwards along the ridgeline from the water management area.
- Diversion Channel 2 (DC2) from WD2 to WD1 overflow water from WD2 will flow along the channel to WD1.
- Diversion Channel 3 (DC3) east of WD2 directing runoff from the upper east catchment into WD2.

Operationally water will be pumped from WD1 to the plant to provide the raw water supply. Water will be pumped from WD2 to WD1 each dry season (nominally up to 50,000 m³/month) to provide water in WD1 to supply the plant water demand. It is necessary to build the water dams and diversion system in advance of commissioning

in order to accumulate sufficient water for startup. In order to prevent a shortfall under average conditions in Year 1 the two water dams needs to be constructed early enough to capture one wet season prior to commissioning. Based on a plant commissioning date of March 2020 the water dams would need to be operational in March 2019. Should a 1 in 100 dry year condition occur in Year 1 the plant will have a total shortfall of approximately 100,000m² between months 11 and 12 of Year 1.

1.6.4 Water Dams

The water dams will both be downstream multi zoned embankments with a 10 m wide crest and upstream and downstream slopes of 1V:3H. The embankment zones will consist of an upstream erosion control layer which will be durable waste rock of a suitable size; an upstream low permeability zone (Zone A) to reduce seepage through to the TSF area and a downstream structural zone (Zone C). The material for constructing the two water dams will be won from local borrow. If suitable durable waste rock is not available economically, HDPE could be used as an upstream face erosion control system. Table 1.5 provides design data for the two water dams.

Table 1.5: Water Dams

Dam	WD1	WD2	25
Catchment (ha)	49.7	105.1*	
Height (m)	27	20	
Storage Capacity (Mm ³)	0.58	0.332	
Nominal Embankment Fill (m ³)	130,000	85,000	

* Includes area from Diversion Channel 3

It is recommended that the downstream faces of the water dams are vegetated to reduce erosion and sediment loss.

1.6.5 Diversion Channels

The diversion channels are designed based on diverting the bulk of the rainfall runoff from the upstream catchment and transferring water from water dam to water dam. The channels will have a base width of 2 m and be a minimum of 0.8 m deep giving a maximum flow rate of 4 m³/s or up to 300,000 m³/day.

For storm events that result in flow larger than these the diversion channels will be designed to overflow into the TSF area. Similarly both water dams will have emergency spillways to discharge into the TSF to prevent overtopping of the water dam embankment.

1.6.6 Water Supply

The two water dams are insufficient to supply the full plant water demand under both average and 1 in 100 dry year climatic conditions. The model was run with an external bore input based on the bore running for six months during the dry season (December to May) each year. Table 1.6 summarises the bore input requirements.

Climatic Conditions	Bore Supply Rate (L/s)	Shortfall Years
Average	8.50	2 to 5
1 in 100 Dry Year		2 to 5
Year -1	9.63	2 to 5
Year 1	12.54	1 to 5
Year 2	15.47	2 to 5
Year 3	17.31	2 to 5
Year 4	15.13	2 to 5
Year 5	11.98	2 to 6
Year 6	9.58	2 to 7

Table 1.6: Bore Input Flows

A minimum bore inflow rate (assumed to be pumped into WD1) of 8.5 L/s will be required to prevent shortfalls under average climatic conditions increasing to a supply rate of 17.3 L/s for 1 in 100 dry year climatic conditions.

1.7 SEDIMENT CONTROL

The design of the TSF and water management system provide a high level of sediment control in the existing structures as follows:

- The water dams will act as sediment traps for the upstream catchments.
- The TSF will act as a sediment trap for flows off the water dam embankments and areas to the south of the water dams.

A sediment control pond will be constructed downstream of the TSF embankment to capture sediment generated by runoff from the embankment. In later stages the downstream section of the embankment will be constructed of waste rock and the sediment control requirements will be reduced.

1.8 EXTERNAL WATER SOURCES

The construction of the water dams in advance of commissioning will potentially result in sufficient water availability for the plant raw water needs for Year 1 depending on the

climatic conditions at the site. Water demands for dust control or pit operations will need to be supplied from other sources.

TULU KAPI GOLD PROJECT TAILINGS STORAGE FACILITY AND WATER MANAGEMENT SYSTEM POTENTIAL STORAGE OPTIONS

Knight Piésold

Ref: PE402-00012/03 Figure 1.3

TULU KAPI GOLD PROJECT DAM BREAK ASSESSMENT MAIN EMBANKMENT BREACH

Knight Piésold

TAILINGS STORAGE FACILITY AND WATER MANAGEMENT SYSTEM AVERAGE CLIMATE CONDITIONS PLUS 1 IN 100 WET YEAR EVENTS

PE402-00012/02 Figure 1.4

TAILINGS STORAGE FACILITY AND WATER MANAGEMENT SYSTEM EMBANKMENT LEVELS

PE402-00012/02 Figure 1.5 **APPENDIX 7.2**

TSF AND WATER DAM - DESIGN

r.	~		0			111		<u> </u>
٩		I	0		N	пстіо	Nadio 1 and 1 an	
			Γ		Prepared by:	Knight Piésold	A.B.N. 67 001 040 419 A.C.N. 001 040 419 Knight Piésold Pty. Ltd. Level 1, 184 Adelaide Terrace EAST PERTH, WA 6004 AUSTRALIA	DATE CHECKED DESIGNED APPROVE DATE CHECKED DESIGNED APPROVE COULT AND A THE CHECKED DESIGNED APPROVE COULT AND A THE APPROVE AND A THE APPROVE APPROVE AND A THE APPROVE AND A THE APPROVE AND A THE APPROVE APPROVE AND A THE APPROVE AND A THE APPROVE AND A THE APPROVE APPROVE AND A THE APPROVE A
	GOLD PROJECT	RAGE FACILITY	AGE DAM AND IR MANAGEMENT	ITY STUDY		Ι		PRK DR A F T PRK PRK PRK Rnight Pickold Consolitions Refiminerals PLC PR Refininerals PLC PR Refininerals PLC PR Refininerals PLC PR CKD PR Refininerals PLC PR CR
	TULU KAPI (TAILINGS STO	WATER STOR Surface wate	FEASIBIL	for:	RALS PLC		A ISSUED FOR FEASIBILITY STUDY Revision Issued For FEASIBILITY STUDY Revision Description Revision Description 3 4
					Prepared 1	KEFI MINE		410 - 1 DRAWING No. DRAWING TITLE

COMMON LEGEND	EXISTING GROUND SURFACE OR BOTTOM OF EXCAVATION	- 260 - EXISTING GROUND CONTOUR AND ELEVATION (IN METRES)	SLOPE INDICATOR	H:V SLOPE INDICATOR (HORIZONTAL TO VERTICAL)	SECTION OR DETAIL NUMBER

Ī

TILE FAGE DRAWING TITLE TILE FAGE INDEX, ABREVIATIONS AND COMMON LEGEND INDEX, ABREVIATIONS AND COMMON LEGEND INDEX, ABREVIATIONS AND COMMON LEGEND INDE X, ABREVIATIONS AND COMMON LEGEND INDEX, ABREVIATIONS AND COMMON LEGEND ISTE OVERVIEM ISTE OVERVIEM STAGE 10 GENERAL ARRANGEMENT ISTAGE 10 GENERAL ARRANGEMENT STAGE 10 GENERAL ARRANGEMENT ISTAGE 10 GENERAL ARRANGEMENT ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE ELYOUT UNDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 IBMANWARNT SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT UNDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 ISTAGE 10 UNDERDRAINAGE LAYOUT INDERDRAINAGE SECT		
ITTLE PAGE INDEX, ABBREVIATIONS AND COMMON LEGEND INDEX, ABBREVIATIONS AND COMMON LEGEND SITE OVERVIEW SITE OVERVIEW SITE OVERVIEW STAGE 10 GENERAL, ARRANGEMENT STAGE 10 GENERAL, ARRANGEMENT EMBANKMENT SECTIONS AND DETALLS -SHEET 1 EMBANKMENT SECTIONS AND DETALLS -SHEET 2 EMBANKMENT SECTIONS AND DETALLS -SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION DETALLS MONTORING INSTRUMENTATION DETALLS MONTORING INSTRUMENTATION DETALLS TORIAL SECTIONS AND DETALLS -SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORIAL INSTRUMENTATION LAYOUT MONTORIAL SECTIONS AND DETALLS - SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORIAL INSTRUMENTATION LAYOUT MONTORIAL INSTRUMENTATION LAYOUT MONTORIAL SECTIONS AND DETALLS - SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORIAL INSTRUMENTATION LAYOUT TORIAL SECTIONS AND DETALLS - SHEET 2 MONTORIAL INSTRUMENTATION LAYOUT MONTORIAL INSTRUMENTATION LAYOUT MONTORIAL INSTRUMENTATION LAYOUT TORIAL SECTIONS AND DETALLS - SHEET 2 MONTORIAL INSTRUMENTATION LAYOUT	REV.	DRAWING No.
INDEX, ABBREVIATIONS AND COMMON LEGEND STIE OVERVIEW STIE OVERVIEW STAGE 10 GENERAL ARRANGEMENT STAGE 10 GENERAL ARRANGEMENT STAGE 10 GENERAL ARRANGEMENT ENBANKINE SECTIONS AND DETAILS - SHEET 1 ENBANKINET SECTIONS AND DETAILS - SHEET 2 ENBANKINET SECTIONS AND DETAILS - SHEET 2 ENBANKINET SECTIONS AND DETAILS - SHEET 2 ENBANKINENT SECTIONS AND DETAILS - SHEET 2 MONTORING INSTRUMENTTION LAYOUT MONTORING INSTRUMENTTION LAYOUT MONTORING INSTRUMENTATION LAYOUT GENERAL ARRANGEMENT CREAT ARRANGEMENT	A	402-012-B001-001
SITE OVERVIEW SITE GENERAL ARRANGEMENT STAGE 1 GENERAL ARRANGEMENT STAGE 1 GENERAL ARRANGEMENT STAGE 1 GENERAL ARRANGEMENT EINBANKMENT SECTIONS AND DETALIS - SHEET 1 EINBANKMENT SECTIONS AND DETALIS - SHEET 2 EINBANKMENT SECTIONS AND DETALIS - SHEET 1 EINBANKMENT SECTIONS AND DETALIS - SHEET 1 UNDER DRANAGE SECTIONS AND DETALIS - SHEET 1 MONITORING INSTRUMENTATION DETALIS - SHEET 2 MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION LAYOUT - STORE 2 MONITORING INSTRUMENTATION LAYOUT - SHEET 2 MONITORING INSTRUMENTATION LAYOUT - SHEET 2 MONITORING INSTRUMENTATION LAYOUT - SHEET 2 MONITORIA INSTRUMENTATION LAYOUT - SHEET 2 MO	A	402-012-B001-002
SITE GENERAL ARRANGEMENT 517GE 1 GENERAL ARRANGEMENT 517GE 1 GENERAL ARRANGEMENT ENBANKMENT SECTIONS AND DETALLS - SHEET 1 ENBANKMENT SECTIONS AND DETALLS - SHEET 2 ENBANKMENT SECTIONS AND DETALLS - SHEET 2 ENBANKMENT SECTIONS AND DETALLS - SHEET 4 TAGE 10 UNDERDRAINAGE SECTIONS AND DETALLS - SHEET 1 UNDERDRAINAGE SECTIONS AND DETALLS - SHEET 1 UNDERDRAINAGE SECTIONS AND DETALLS - SHEET 1 MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION DETALLS - SHEET 2 MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION LAYOUT TAGE AS REAL ARRANGEMENT	×	402-012-B001-050
STAGE 1 GENERAL ARRANGEMENT STAGE 10 GENERAL. ARRANGEMENT (FINAL) STAGE 10 GENERAL. ARRANGEMENT (FINAL) STAGE 10 GENERAL. ARRANGENTAL SHEET 1 EMBANKMENT SECTIONS AND DETALS - SHEET 2 EMBANKMENT SECTIONS AND DETALS - SHEET 2 EMBANKMENT SECTIONS AND DETALS - SHEET 1 UNDER RAMAGE SECTIONS AND DETALS - SHEET 1 UNDER RAMAGE SECTIONS AND DETALS - SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION DETALS - SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT	A	402-012-B201-100
STAGE TO GENERAL ARRANGEMENT (FINAL) STAGE TO GENERAL ARRANGEMENT (FINAL) EMBANKMENT SECTIONS AND DETAILS - SHEET 1 EMBANKMENT SECTIONS AND DETAILS - SHEET 2 EMBANKMENT SECTIONS AND DETAILS - SHEET 3 EMBANKMENT SECTIONS AND DETAILS - SHEET 3 EMBANKMENT SECTIONS AND DETAILS - SHEET 1 UNDERDRAIMAGE EXCTIONS AND DETAILS - SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS TORIAL SECTIONS AND DETAILS - SHEET 2 MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS TORIAL SECTIONS AND DETAILS TORIAL SECTIONS AND DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS TORIAL SECTIONS AND DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORIAL INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORIAL INSTRUMENTATION DETAILS MONTORIAL INSTRUMENTATION DETAILS	A	402-012-B201-101
EMBANKMENT SECTIONS AND DETAILS -SHEET 1 EMBANKMENT SECTIONS AND DETAILS -SHEET 2 EMBANKMENT SECTIONS AND DETAILS -SHEET 3 EMBANKMENT SECTIONS AND DETAILS -SHEET 4 EMBANKMENT SECTIONS AND DETAILS -SHEET 4 UNDERDRAINGE SECTIONS AND DETAILS -SHEET 1 UNDERDRAINGE SECTIONS AND DETAILS -SHEET 2 MONITORING INSTRUMENTATION DETAILS - SHEET 2	A	402-012-B201-110
EMBANKMENT SECTIONS AND DETAILS -SHEET 2 EMBANKMENT SECTIONS AND DETAILS -SHEET 3 EMBANKMENT SECTIONS AND DETAILS -SHEET 4 STOGE 10 UNDERDRAINAGE ELYOUT UNDERDRAINAGE SECTIONS AND DETAILS - SHEET 4 UNDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 MONITORING INSTRUMENTATION DETAILS - TOR 2 MONI	A	402-012-B201-301
EMBANKMENT SECTIONS AND DETAILS -SHEET 3 EMBANKMENT SECTIONS AND DETAILS -SHEET 4 STGGF 10 UNDERDRAINGE LAYOUT UNDERDRAINGE SECTIONS AND DETAILS - SHEET 1 UNDERDRAINGE SECTIONS AND DETAILS - SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION LAYOUT ACTIONS AND STATION DETAILS TORIAL ARRANGEMENT TORIAL ARRANGEMENT	A	402-012-B201-302
EMBANKMENT SECTIONS AND DETAILS - SHEET 4 57 AGE 10 UNDERDRAINAGE LAYOUT UNDERDRAINAGE SECTIONS AND DETAILS - SHEET 1 NUDERDRAINAGE SECTIONS AND DETAILS - SHEET 2 MONTORING INSTRUMENTATION LAYOUT MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS MONTORING INSTRUMENTATION DETAILS TORICAL ARRANGEMENT TORICAL ARRANGEMENT	A	402-012-B201-303
STAGE TO UNDERDRAIMAGE LAY OUT UNDERDRAIMAGE SECTIONS AND DETALLS - SHEET 1 UNDERDRAIMAGE SECTIONS AND DETALLS - SHEET 2 MOMITORING INSTRYLING LAYOUT MOMITORING INSTRYLING LAYOUT MOMITORING INSTRUMENTATION DETALLS MONTORING INSTRUMENTATION DETALLS MONTORING INSTRUMENTATION DETALLS MONTORING INSTRUMENTATION LAYOUT STERLA RARANGEMENT TOPICAL SERVICING AND FILLIS	A	402-012-B201-304
UNDERDRAINAGE SECTIONS AND DETALLS - SHEET 1 UNDERDRAINAGE SECTIONS AND DETALLS - SHEET 2 MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION DETALLS WATER STORAGE DAM GENERAL ARRANGEMENT TOPICAL SECTIONS AND DETALLS	A	402-012-B201-510
UNDERDRAINAGE SECTIONS AND DETALLS - SHEET 2 MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION DETALLS WATER STORAGE DAM GENERAL ARRANGEMENT VERIAL SECTIONS AND DETALIS	A	402-012-B201-551
MONITORING INSTRUMENTATION LAYOUT MONITORING INSTRUMENTATION DETALLS WATER STORAGE DAM GENERAL ARRANGEMENT VORIAL SECTIONS AND DETALIS	A	402-012-B201-552
MONTORING IMSTRUMENTATION DETAILS WATER STORAGE DAM GENERAL ARRANGEMENT TVORGAL SECTIONS AND DETAILS	A	402-012-B201-900
WATER STORAGE DAM GENERAL ARRANGEMENT TYPICAL SECTIONS AND RETAILS	A	402-012-B201-905
GENERAL ARRANGEMENT TYPICAI SECTIONS AND DETAILS		
TYPICAL SECTIONS AND DETAILS	A	402-012-B401-101
	A	402-012-B401-121
SURFACE WATER MANAGEMENT		
TYPICAL SECTIONS AND DETAILS	A	402-012-B501-301

GENERAL NOTES
1. ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE NOTED.
2. ALL COORDINATES STATED IN UTM (WGS84) ZONE 37 SOUTH.
3. ALL ELEVATIONS IN METRES, RELATIVE TO MEAN SEA LEVEL.
4. DRAWINGS ARE NOT TO BE SCALED.
 DRAWINGS TO BE READ IN CONJUNCTION WITH THE TECHNICAL SPECIFICATIONS.

as not been particly discipated and is an acid property of a list lead to the borrower for their confidential use only, and in a list lead to the borrower for their confidential use only, and in a fille diswing. The borrower promises and agrees to return it has it is and in the regrouped on the only on the only diswings receipt or any other partners or endly, not used for any partners are only or any other partners or endly. SCALE N.T.S

Knight Piésold

0

ISSUED FOR FEASIBILITY STUDY

GNED

A Rev

STATUS FS DRAWING NUMBER 402-012-B001-002

KEFI MINERALS PLC TULU KAPI GOLD PROJECT TSF, WSD AND SWM INDEX, ABBREVIATIONS AND COMMON LEGEND

IFNT APP

dd⊽

DESIGN CKD DRN

DATE

ì

SEFERENCES HEET SIZE A3

NOT FOR CONSTRUCTION

6 10 10		TABLE No.2 1. BREAKS IN SAFETY BUND AT 50M CENTRES (TO ALLOW	TAILINGS STORAGE FACILITY DRAINAGE OF RAINFALLRUNDEF) Annotation and the state of the stat	STAGNG CRESI Height MAXIMUM ENBLANKIRENI 3. A. A.	1	3 1630.0 «35.0 • • • • • • • • • • • • • • • • • • •	5 1637.1 ≈42.1 C. COMPETENT MATERIAL AS DETERMINED BY THE ENGINEER.	7 1642.1 add./	8 1644.4 ad9.4	9 1646.3 ~51.3 10 (FINAL) 1648.2 ~53.2			c				 ۲	RIP DRAIN	SCARFY, MOSTURE CONDITION AND COMPACT		SAFETY BUND		SONE D				CKD DESIGN APP CLIENTAPP EMBANKMENT SECTIONS AND DETAILS - SHEET 1 402-012-B201-301 A
4 5 6 7 7		COMPACTION SPECIFICATION GRADING TABLE No.2	B8% SMDD Dmm = 75mm TAILINGS STORAGE FACILITY -1% <0MC < 43% PINEs > 12 mm = 75	95% SMDD TBC. 1 (10) (10) (10) (10) (10) (10) (10) (1	96% SMD2 - 2% CDmm = 200mm	Lin Other - Lin Other 3 16300 151 CoMPACIED Dmix = 360mm 4 1633.8	22% SMDD D _{max} = 300mm 6 1637.1	COMPACTED WITH EXCAVATOR D _{mux} = 300mm 6 1643.1 BUCKET % FINES < 5 7 1642.1	UNFORM DENSITY FREE FROM Dmms = 19mm 8 1644.4 CAVITIES % FINES < 5 0 0 0	UNFORM DENSITY FREE FROM D _{max} = 75mm 9 1646.3 CAVITIES % FIMES < 5 10 (FINAL) 1648.2	UNIFORM DENSITY FREE FROM 05 FIRES 6 CAVITIES 05 Dava = 500mm Dava = 500mm	88% SMDD 0% C + 33% PT MES - 40 0% - CMC C + 33% PT MES - 40 PT mes - 72	6 PASSED	95% SMDD	95% SMDD Dema = 37.5mm -0% <0MC < 43% PHES > 10 P1me < 10		3 	25 25 25 25 25 25 25 25 25 25	- CUT-OFF - CUT-OFF AND COMPACT	A TYPICAL STAGE 1 STARTER EMBANKMENT SECTION	8000 SODO						DATE DESCRIPTION DRV CKD DESIGN APP CLIENT APP EMBANKMEN
1 2 3	TABLE No.1 SOIL SPECIFICATION SUMMARY	ZONE TYPE ZONE DESCRIPTION MAXIMUM LAYER THICKNESS	ZONE A LOW PERMEABLITY MATERIAL 300mm	ZONE B TRANSITION ZONE 300mm	ZONE C1 (PI ACED PY CIVIL CONTRACTOR) 300mm	ZONE C2 COLLIVERED BY MINING RALACED BY CIVIL, 500mm	ZONE D GENERAL FILL 500mm	ZONE E EROSION PROTECTION N/A	ZONE F1 SAND DRAINAGE MEDIUM N/A	ZONE F2 GRAVEL DRAINAGE MEDIUM N/A	ZONE G CLEAN SELECTED ROCKFILL NA	CUT-OFF LOW PERMEABILITY MATERIAL 300mm	CUT-OFF IN-SITU MATERIAL TRENCH BASE AS APPROVED BY THE ENGINEER 200mm	EMBANKMENT IN-SITU MATERIAL AS APPROVED BY THE NA FOUNDATION ENGINEER	MEARING SELECTED LATERITE GRAVEL NIA COURSE	TEXCEL-R UV RESISTANT 600R GEOTEXTLE (SEE TABLE 2) (SEE TABLE 2) ▲	2	TOE DRAN	LOW FERNEABULTY ZONE A SOIL LINER (SEE NOTE 2) 4000		Ľ	SAFETY BUND	STAGE 1 OREST ZONE D	1 256 1 - 256 - 200 - 200	4 4 402-012-B201-101 STAGE 1 GENERAL ARRANGEMENT 4 4 402-012-B201-302 EMBANKMENT SECTIONS AND DETAILS - SHEET 2	SNOIS SNOIS	DRAWING NO. DRAWING TITLE

APPENDIX 12.1

PROCESSING OPERATING COST ESTIMATE DETAIL

TULU KAPI GOLD PROJECT STUDY UPDATE

APPENDIX 12.1

First Fill and Opening Stock Estimate

								Onening			
-		Cost	Unit	Annual	Delivery	First		Stocks			Total
Item		(Total)		Consumption*	Size				No		
		US\$/Unit		(units)		units	nS\$	units	Days	nS\$	nS\$
Primary Jaw Crusher	Fixed Jaw	\$24,504	set	8.8 set/yr	1 set(s)	Included	0	2 set(s)	83	49,008	49,008
-	Moving Jaw	\$24,504	set	5.9 set/yr	1 set(s)	Included	0	1 set(s)	62	24,504	24,504
Product Screen	Replacement	\$7,191	per	6.0 set/yr	1 set(s)	Included	0	1 set(s)	61	7,191	7,191
	Deck		screen								
SAG Mill 1	_ifters/Liners	\$720,030	set	1.7 set/yr	1 set(s)	Included	0	0.25	55	180,007	180,007
SAG Mill	Brinding Media	\$1,308	ţ	1,124 t/vr	20 t	141 t	184,327	sel(s) 139 t	45	181,208	365,535
Sodium Cyanide)	\$3,098	t	499 t/yr	20 t	8 t	24,784	62 t	45	190,565	215,349
Quicklime (90% CaO)		\$608	t	408 t/yr	20 t	10 t	6,080	50 t	45	30,583	36,663
Carbon		\$2,698	Ŧ	87 t/yr	20 t	84 t	226,632	11 t	45	28,941	255,573
Flocculant		\$3,148	Ŧ	0 t/yr	11	0.1 t	315	0 t	45	0	315
Hydrochloric Acid		\$828	t	261 t/yr	11	0.6 t	472	32 t	45	26,679	27,151
Sodium Hydroxide		\$1,123	÷	973 t/yr	1 t	3.0 t	3,369	120 t	45	134,672	138,041
Sodium Metabisulpite		\$843	÷	1,737 t/yr	11	8.0 t	6,744	214 t	45	180,571	187,315
Copper Sulphate		\$2,383	÷	364 t/yr	11	1.3 t	3,098	45 t	45	106,882	109,980
Stainless Steel Stocking		\$399	kg	66 kg/yr	1 set(s)	44 kg	17,570	1 set(s)	365	17,570	35,140
Crucibles		\$1,785	ea	9 /yr	1 each	2	3,570	ო	122	5,355	8,925
Borax		\$1,748	t	0.81 t/yr	1 t	0 kg	0	1,000 kg	452	1,748	1,748
Silica		\$978	t	0.34 t/yr	1 t	0 kg	0	1,000 kg	1,067	978	978
Nitre		\$1,048	t	0.11 t/yr	1 t	0 kg	0	1,000 kg	3,333	1,048	1,048
Soda Ash		\$958	÷	0.11 t/yr	11	0 kg	0	1,000 kg	3,333	958	958
Antiscalant – Decant		\$2,248	÷	5.50 t/yr	11	0 kg	0	1,000 kg	66	2,248	2,248
Return											
Antiscalant - Elution		\$3,398	t	0.15 t/yr	11	0 kg	0	1,000 kg	2,380	3,398	3,398
Sulphamic Acid		\$1,948	÷	1.04 t/yr	11	20 kg	39	980 kg	344	1,909	1,948
Diesel		\$620	kL	0.27 kL/t				Consignmen	t		
Lubricants		\$40,000	lot			-	40,000				40,000
Plant Operating Tools & Equipr	nent	\$10,000	lot			-	10,000				10,000
Gold Room Tools & Equipment		\$10,000	lot			-	10,000				10,000
Laboratory Reagents		\$0	lot			-	0				0
TOTAL CONSUMABLE COST							536,999			1,176,024	1,713,023
* Based on Felsic ore											

APPENDIX 13.1

PRELIMINARY BASELINE SCHEDULE – CRITICAL PATH

	PROJECT: T	ulu Kapi Gold Pr	oject - Kefi	Minerals			30-Mar-17 11:12																																															
	unipod	Proposal: KEFI P354	10_D1			UKAFI																																																
Activity ID Ac	tvity Name	Remaining Start Duration	Finish	Total Remaining Float Labor Units	2017 2017 2017		2019 2019 41 1 1 1 2 2 2 1 2 1 2 1 2																																															
Tulu Kapi Gold Proje	ct - Preliminary PEP Water Infarstructure Development	661 06-Apr-17	21-Nov-19	0 274129.6																																																		
PROJECT MILESTONES		501 23-Nov-17	21-Nov-19	0.0																																																		
CLIENT INTERFACES		202 23-Nov-17	13-Sep-18	1 0.0																																																		
Owners KGP-IN-1000	C Contract Award	202 23-Nov-17 0 23-Nov-17*	13-Sep-18	1 0.0																																																		
KGP-IN-1030 Pla	o compared when a complete *Full & Unimpeded Access to CIL & Milling Area's Req'd	0 13-Sep-18		3 0.0																																																		
KGP-IN-1600 Sit	e Security Services & Fencing in Place	0 13-Sep-18		3 0.0		•																																																
EPC All Disciplines		0 21-Nov-19 0 21-Nov-19	21-Nov-19 21-Nov-19	0.0	Wê t	Merce and a second seco	Wet																																															
KGP-IN-1210 Co	mmissioning/Performance Testing Complete	0	21-Nov-19	0.0	Season	Season	Season																																															
OWNERS		160 06-Apr-17	23-Nov-17	0.0																																																		
APPROVALS		0 06-Apr-17	06-Apr-17	0.0																																																		
Internal		0 06-Apr-17	06-Apr-17	0.0																																																		
KGP-IN-2640 Api	proval to proceed with Early Works Design, Procurement and Infrastructure Development	0 06-Apr-17*	2	0.0																																																		
EPC DESIGN INPUTS		0 22-Nov-17	23-Nov-17	0.0																																																		
Owners		0 22-Nov-17	23-Nov-17	0.0																																																		
KGP-IN-2120 SIE	e Geotechnical Data	0	22-Nov-17	0.0																																																		
KGP-IN-2130 10 Hv	pographical survey drohorical Study		22-Nov-17																																																			
KGP-IN-2160 En	vironmental Study	0	22-Nov-17	0.0																																																		
KGP-IN-2150 ME	eT Testwork	0	23-Nov-17	0.0																																																		
PHASE 1 - EARLY WORH	(S - P ROJECT DE VEL OPMENT	608 06-Apr-17	09-Sep-19	0 65619.9																																																		
EPCM Project Developme	Et al.	608 06-Apr-17	09-Sep-19	0 65619.9																																																		
000 - Site Establish		143 06-Apr-17	31-Oct-17	0 4890.0																																																		
060 - Construction Accon	iodation (Exploration Camp Upgrade)	143 06-Apr-17 25 06 Apr 17	31-Oct-17 15 Mov: 17	0 4890.0																																																		
KGP-IN-1500 Co	nstruction/Exoloration Camo Uporade General Arrangement	25 06-Apr-17	15-Mav-17*	0 70.0																																																		
Electrical & Instrumentati		14 04-Oct-17	24-Oct-17	0 300.0																																																		
KGP-IN-1720 Ins	tall Village Electrical Reticulation	21 04-Oct-17	24-Oct-17	0 300.0																																																		
Buildings & Architectura.		111 16-May-17	19-Oct-17	0 3620.0																																																		
KGP-IN-1520 Co	nstruction Camp Upgrade - Supply & Install Contact	0	13-Jun-17	0.0	•																																																	
KGP-IN-3210 Te.	nder & Award Exploration Camp Upgrade- Accom Units, Mess Ablutions & Tents Package	20 16-May-17	13-Jun-17	0 368.0																																																		
KGP-IN-1550 De	sign Construction Camp Accommodation Units & Buildings	20 14-Jun-17	71-Jul-17	0 160.0																																																		
KGP-IN-3220 ME	aruracure Additoriar Accorri builligs - (Uritis, Additoriar Mess Floors, Addutoris & rents) ansnort Temporary Camp - Accord Thrite, Mess Ablutions & Tents	21 22-Aur-17	11-Sen-17	0 320.0																																																		
KGP-IN-1700 Ins	tiall Laundry, Admin Office & Shop Buildings	21 09-Sep-17	29-Sep-17	0 1400.0]																																																	
KGP-IN-1690 Ins	tall Dry / Wet Mess Buildings	21 29-Sep-17	19-Oct-17	0 1004.0																																																		
Infrastructure	14 10 محمد منافعه المحمد ا	9 11-Oct-17	24-Oct-17	0 100.0																																																		
Commissioning	Nai constactor camp renoitig a rood egning	5 24-Oct-17	31-Oct-17	0 800.0																																																		
KGP-IN-1770 Co	nstruction/Exploration Camp Accomodation Commissioning	7 24-Oct-17	31-Oct-17	0 800.0																																																		
KGP-IN-1760 Co	nstruction/Exploration Camp Ready for EPC Occupation	0	31-Oct-17	0.0																																																		
300 - Infrastructure		517 17-Aug-17	09-Sep-19	0 50837.9																																																		
Earthworks		20 31-Oct-17	28-Nov-17	0.0																																																		
KGP-IN-13640 Mc	bilise Early Works Bulk EW Contractor	30 31-Oct-17	28-Nov-17	0.0																																																		
310 - Public Roads, Site K Farthworks	oads & Iracks	49 13-Nov-17 49 13-Nov-17	24-Jan-18 24-Jan-18	0 0/1/ 0																																																		
KGP-IN-11610 Act	cess Road to TSF & Storage Dams	68 13-Nov-17	24-Jan-18	0 7170.0																																																		
330 - Water Supply (Water	Storage Dams)	517 17-Aug-17	09-Sep-19	0 43667.9			ľ																																															
Owners		20 17-Aug-17	13-Sep-17	3 368.0																																																		
Domoinia audi of EB	South Contribution Development Roman March	solino Schodulo Dov	-tonmont	Critical Dath		P3540-000-SCH-001 B (Water Infrastructure Developm	oment)																																															
					Date	Revision Check	cked Approved																																															
Remaining Work	Summary	Page 1 of 4			30-Mar-17	7 Tulu Kapi Preliminary PEP - IFR AB	H																																															
						_																																																
2017 2017 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019																																																			D2540 000 SCH 004 B /// vier lafe-setriciture Davisloweest	Date Checked Approved Checked Approved	30-Mar-17 Tulu Kapi Preliminary PEP - IFR AB AB	
--	--	------------	---	--------------	---	----------	---	----------------	--	---------------------	--------------------	-----------------	--	------------------------------	---------------------------------------	---------------------------------	-----------------	-----------------	---	---------------------------	--------------------------------	---	------------------------------	--------------------------	-----------	----------------------	----------------	-----------	---------------------	---------------	-------------	-----------------	-------------	-----------	------------------------	------------	-----------------------	---------------------------------	--------------	------------	---------------------------------------	------------------	--------------------	----------------------	---	----------------	--------------------------	--------------------	--------------------	------------	--	--	---	---
Ining Units MIAIN	68.0	80.9	0.0	66.4	53.7	19.0	19.0	0.0	0.0	92.0	46.0	46.0	0.0	0.0	0.0	0.0	46.0	46.0	0.0	0.0	0.0	46.0	0.0	09.0	0.0/	28.0	28.0	65.0	30.0	35.0	0.0	0.0	0.0	0.0	40.0	0.04	40.0	20.1	0.0	0.0	0.0	74.7	22.6	22.6	18.0	25.0	03.7	57.1	57.1	61.0	415	ţ		
otal Rema loat Labor I	3	0 393	2	0 L	572 C	0 36	36	0	0	3 98	3 46	3 49	7 7	7 7	7	1 4	3 49	3 49	2	2	2	4 .	4 4	0 3/		2 10	5	5 30	0	5 25	14	14	2	۲ ۲	4	t s	4 2038	0 2020	0	0	0	0 1961	0 306	0 302	0 21	24	0 61	0 808	0 808	0 79		ritical Pa		
Finish	3-Sep-17	0-May-18	6-Oct-17	8-Jan-18	9-Jair-10	0-Mav-18)-May-18*	9-Sep-19	9-Sep-19	3-Sep-17	3-Sep-17	3-Sep-17	/-Apr-17	6-Jun-17	5 Aug 17	3-Sep-17	3-Sep-17	3-Sep-17	7-Apr-17	6-Jun-17	!	5-Aug-17	3-Sep-17	3-May-18	0-Dec-1/	6-Dec-17	8-Dec-17	3-May-18	2-Feb-18	3-May-18	9-Jan-18	9-Jan-18	1-Mar-18	1-Mar-18	9-May-18	0 Max 10	9-May-18	2-Out-19 4-Ant-18	4-Apr-18	4-Apr-18	4-Apr-18	2-Oct-19	1-Oct-18	1-Uct-18	3-Sep-18	1-Oct-18	1-Oct-18	2-Oct-19	2-Oct-19	2-Oct-19		pment - C		
Start	Aug-17 1	Sep-17 31	Sep-17 2	0 /1-vov	an-18* 30	Dec-17 3	Jec-17 30	May-18 0	Aay-18* 0	Apr-17 1	Apr-17 1	Apr-17 1	Apr-17 2	Apr-17 1	21-uu	Aud-17 1	Apr-17 1	Apr-17 1	Apr-17 2	Apr-17 1	Jun-17		Aug-17 1	2 /L-VOV	11-VOV	Vov-17 0	Vov-17 0	Vov-17 2:	Vov-17 2	Dec-17 2:	Dec-17 1	Dec-17 1	Mar-18 0	Mar-18 0	Apr-18 2: Apr-18 2:	Anr 10 2	Apr-18 2: Mar 18 1	Mar-10 1.	Mar-18 2	Mar-18 2	Mar-18 2	Apr-18 1.	Apr-18 3	Apr-18 3	Mav-18 1	Sep-18 3	Sep-18 3	Oct-18 1	Oct-18 1	Oct-18 1		e Develo	of 4	
Remaining Semaining Se	20 17-,	176 14-	30 14-	34 28-1	34 U3-L 135 24	115 08-1	175 08-[322 30-1	525 30-N	111 06	111 06-	111 06-	13 06-	35 28-		20 25-	111 06-	111 06-	13 06-	35 28-	0 29-	60 30-	20 25-	122 23-1	20 23-102	10 23-1	10 23-1	122 23-1	62 23-1	107 14-[28 07-1	28 07-1	0 01-1	0 01-	-FU 02		-50 03- 300 23	-02 060	20 23-1	20 23-1	30 23-1	370 24-	133 24-	133 24-	143 13-1	56 13-	56 13-	237 31-	237 31-	237 31-1	Coloradorial of the	ie Schedule	Page 2	
	in & Construction		s Design		Embankment Construction & Liner Installation				nissioned & Commence Water Storage)				ent & Scope		Dout Dou'A				& Scope			oort KevA																														Preliminary Basel		
Activity Name	Tender & Award Water Storage Dams Design		Water Balance Calculations & Storage Dams	Clear & Grub	Cut to Fill & Foundation Flep on Storage Dat. Raw Water Storage Dams Site Preparation. F		Construction Water Supply Piping Installation		Water Storage Dams Ready For Use (Comm	onsultants			Prepare Geotechnical Investigation Agreeme	Tender Geotechnical Testwork	Carry Out Centechnical Study Contract	Submit Geotechnical Report Rev0			Prepare Hydrology Investigation Agreement 8	Tender Hydrology Testwork	Award Hydrology Study Contract	Carry Out Hydrology lestwork & Submit Rep	Submit Hydrology Report Rev0	PECIFICATIONS & DRAFTING	rables	heats/Shecifications			ant General						FABRICATION						Mobilise Plantsite Bulk EW Contractor	ANT	ant General	Diant Office 8 Carls	Plan, olde Oldeal & Gruud Ruik Site Earthworks	In-plant Roads	Site Drainage & Culverts	ation	thing			vel of Effort Critical Remaining Work	Intervent Summary	
cctivity ID	KGP-IN-8710	Earthworks	KGP-IN-3250	KGP-IN-3290	KGP-IN-11250	Pining	KGP-IN-13620	Infrastructure	KGP-IN-13630	530 - Specialist Co	533 - Geotechnical	All Disciplines	KGP-IN-9380	KGP-IN-9970	KGP-IN-10320	KGP-IN-9950	534 - Hydrology	All Disciplines	KGP-IN-9050	KGP-IN-9060	KGP-IN-9070	KGP-IN-9080	KGP-IN-9120	ENGINEERING, SH		Findineering Datash	F - Mechanical	Drafting	110 - Treatment pla	130 - Milling	PROCUREMENT	Long lead Items	VENDOR DATA	Long Lead	MANUFACTURE &	Stantuar u	CONSTRUCTION	CONSTRUCTION 000 - Site Mide	Mobilisation	Earthworks	KGP-IN-12850	100 - PROCESS PL	110 - Treatment pl	Earthworks	KGP-IN-8680	KGP-IN-8730	KGP-IN-8700	120 - Feed Prepara	121 - Primary Crus	Earthworks		Remaining Lev	Actual Work	0

2017 2017 2018 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019																																																		P3540-000-SCH-001 B (Water Infrastructure Development)	Date Revision Checked Approved	30-Mar-17 Tulu Kapi Preliminary PEP - IFR AB AB PH	_
Labor Units M A M	1161.0	6400.0	400.0 62332 1	REAF 6	12081.1	14521.7	12254.7	14869.0	5521.0	5521.0	1134.0	1134.0	2909.0	3309.0 R4395.0	83932.0	63019.0	485.0	1150.0	48755.0	12629.0	0341.0 1234.0	5707.0	7026.0	3911.0	3115.0	6946.0	6946.0	463.0 463.0	463.0	7646.0	6534.0	2062.0	0.0	1798.0	3916.0	3351.0	565.0	556.0	132.0	157.0	1112.0	680.0	424.0	128.0	24.0	24.0	24.0	40.0	40.0	al Dath	מן ו מווי		
Float	sc-18 0	n-19 0	ot-19 0	n-19 0	ab-19 0	ar-19 5	or-19 5	ay-19 5	ct-19 0	ct-19 0	sp-19 0	sp-19 0	0-19 0-10	0F18 V	p-19 1	ar-19 1	ct-18 3	ct-18 3	sb-19 3	ar-19 3	n-19 2	n-19 3	1g-19 1	n-19 3	ıg-19 3	ap-19 1	sp-19 3	sp-19 1	p-19 3	sp-19 1	ap-19 1	lg-19 1	In-19 1	8b-19 1	ul-19 2	or-19 2	ıl-19 2	sp-19	1g-19 2	ap-19 0	ar-19 1	v-19 0	ov-19 0	ct-19 0	ct-19 0	0+19 0	ot-19 0	ct-19 0	ov-19 0	ant - Critic			
	-18* 04-De	7-19 14-Ju	12-00-11-00-12-00-10-10-10-10-10-10-00-10-10-10-10-10-	-10 23-W	-18 10-Fe	-19 20-Mé	r-19 21-Ap	r-19 29-Ma	p-19 07-Oc	07-00	₁ -19 26-Se	3-19 26-Se	1-19 05-00	1-18 08-Se	08-Se	-18 28-Ma)-18 13-Oc	t-18 18-Oc	t-18 19-Fe	7-19 28-Mi	19 ZZ-JU 19 17-An	19 22-Ju	r-19 22-Au	4-19 22-Ju	1-19 22-Au	L-19 08-Se	-19 08-Se	-19 08-Se -19 08-Se	1-19 08-Se	-18 21-Se	t-18 21-Se	t-18 15-Au	t-18 03-Ja	19 07-Fe	-19 20-Ju	r-19 30-Ap	r-19 20-Ju	g-19 21-Se	3-19 26-Au	-19 21-Se	-19 15-Me	9-19 21-No	-19 08-No	t-19 16-Oc	t-19 19-04	-19 29-06	19 26-Oc	t-19 30-Oc	t-19 02-No	muolever		4	
Duration	39 31-Oc	143 10-Fe	140 14-Ju 148 04-De	04-0- 25 04-De	44 21-De	50 05-Fe	44 14-Ma	50 16-Ap	16 12-Se	29 12-Se	19 30-Au	31 30-Au	51 22-AU	2.36 30-Set	236 30-Se	124 30-Se	15 30-Se	6 13-00	126 18-00	44 19-Fe	5/1-62 /C 6/1-8/2 /C	78 17-Ap	77 06-Ma	55 06-Ma	70 22-Ju	46 05-Ju	75 05-Ju 20	23 0/-AU	37 07-Au	223 31-00	223 31-06	197 31-04	43 31-00	24 03-Ja 19 20-Ju	87 15-Ma	29 15-Ma	57 30-Ap	26 15-Au	1 15-Au 16 16 10	10 06-Set	25 07-Fe	53 08-Se	43 08-Se	8 05-00	2 16-00	29 U0-56 2 26-OC	5 21-00	1 29-00	2 30-06	Droliminary Rasoline Schedule		Page 3 o	
Autory Marine	Crushing & Stockpiling Facility Detailed Earthworks	Crushing Chamber & Walls Backfill (Est)	ROM Pad - Clent	Raft Concrete	First Lift & Suspended Slab	Second Lift & Suspended Slab	Third Lift & Suspended Slab	Fourth Lift & Suspended Slab		Install Rom Bin		Primary Crushing Area Piping Installation	Pentation Orisehing Area Electrical Installation				Excavation	Blinding	Concrete Base & Structure	Mechanical Plinths & Apron Slabs	Grinding Area Mill Access Steel	Mill Building Structural Steel		Set Up and Pre-Assmbley of Mill Components	Install SAG Mill	tentation	Grinding Electrical Installation	antation	Classification Area Electrical Installation	I LANT SERVICES	0									entation			NT			ation	2			Lof Effort Critical Domoining Work			
	KGP-IN-8970	KGP-IN-8800	KGP-IN-8870	KGP-IN-8740	KGP-IN-8750	KGP-IN-8760	KGP-IN-8770	KGP-IN-8780	Platework	KGP-IN-8860	Piping	KGP-IN-8850		120 - Milling	132 - Grinding	Civils	KGP-IN-9530	KGP-IN-9540	KGP-IN-9550	KGP-IN-9570	Structural Steel KGP-IN-9390	KGP-IN-13450	Mechanical	KGP-IN-9600	KGP-IN-9620	Electrical & Instrume	KGP-IN-9520	133 - Classification Floctrical & Instrumo	KGP-IN-9470	200 - REAGENTS & PL	220 - Water Services	222 - Raw Water	Earthworks	Civils Mechanical	223 - Process Water	Civils	Platework	225 - Gland Water	Mechanical	Electrical & Instrume	230 - Plant Services	COMMISSIONING	100 - PROCESS PLAN	Primary Crushing	Surge Bin	Screening & Thickeni	CIL	Desorption	Gold room			Remaining Work	D

2017 2017 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019				
λ λ λ λ λ λ λ λ λ λ λ λ λ λ				
32.0	32.0	224.0	112.0	112 0
19 0	19 2	19 0 10	19 0	
08-Nov- 24-Sep-	24-Sep-	21-Nov-		-voN-80
02-Nov-19 21-Sep-19	21-Sep-19	03-Nov-19	03-Nov-10	03-Nov-19 03-Nov-19
Duration 4 02 21	2 21	10	14 0.0	14 03 03 03
ion PLANT SEPVICES		SIONING		Plant Process Commissioning
00 - REAGENTS & PLANT SER	Gland Water	PROCESS COMMISSIONING	Drocee	Process KGP-IN-12830 Plant Pro

APPENDIX 13.2

PRELIMINARY BASELINE SCHEDULE

5	an interest	PROJECT: Tulu Kapi	Gold Pro	iject - Kefi	Mineral	S		DDAET
2		Proposal:	KEFI P354	0_D1				
Activity ID	Activity Name	Remaining Duration	g Start n	Finish	Total F Float Lá	Remaining abor Units	2017 2017 AIMEDIALSTOINED	2018 2019 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019
Tulu Kapi Gold F	roject - Preliminary PEP_Water Infarstructure Development	66	4 01-Apr-17	21-Nov-19	0	073140.4		
PROJECT MILEST	DNES	23	1 11-Oct-17	21-Nov-19	0	0.0		
CLIENT INTERFACE	8	479	9 11-Oct-17	09-Sep-19	34	0.0		
Owners IVCD IN 7820	MTD 8 CTD Consistent Mehiliking (Vander Training for Consisting and Maintenness)	479	9 11-Oct-17	09-Sep-19	34	0.0		
KGP-IN-1580	WIP & STP Operators Mobilised (vertoo) Italiing for Operatoris and Mantenance) STP & WTP Installed. Commissioned - Potable Water at Temporary Camp Available		0 19-Oct-17		156	0.0	•	
KGP-IN-1040	Temporary Construction Camp & Communications Available for Use		0 31-Oct-17		313	0.0		
KGP-IN-2580	Emergency Response & Medical Services In Place		0 31-Oct-17		313	0.0	₩	
KGP-IN-1000	EPC Contract Award		0 23-Nov-17*		0	0.0		
KGP-IN-1010	Contract Executed		0	11-Jan-18	59	0.0		
KGP-IN-1020 KGP-IN-2550	Sand & Aggregate Required On Site Porrow Areas for Structural Eill Identified and Available		0 0	28-Feb-18 28-Feh-18	194	0.0		
KGP-IN-1540	POLICIA ATERS TOT SULUCULAR THIN DETINIED AND AVAILABLE EPC Access to Site Available		0 07-Mar-18	20-1-02	18	0.0		
KGP-IN-2630	Construction Fuel Supply Available On Site		0 26-Jun-18		85	0.0		
KGP-IN-1030	Plant Earthworks Complete *Full & Unimpeded Access to CIL & Miling Area's Req'd		0 13-Sep-18		e	0.0		•
KGP-IN-1600	Site Security Services & Fencing in Place		0 13-Sep-18		e	0.0		•
KGP-IN-1050	Buildings Contractor Mobilisation		0 27-Sep-18	1 I I I	281	0.0		•
KGP-IN-1080	SAG MIL OT SITE Permanent Prwer Available		0 10-Mar-19	14-rep-19	326	0.0		
KGP-IN-1110	TSF Available for Start Up		0	07-Mav-19	200	0.0		•
KGP-IN-1070	First Ore Available by Client		0 18-Jun-19	2 62 10	136	0.0		
KGP-IN-1090	Raw Water Available for Plant commissioning		0 02-Sep-19		15	0.0		•
KGP-IN-1100	Plant First Fills Delivered to Site		0	09-Sep-19	49	0.0		
EPC		43.	2 07-Mar-18	21-Nov-19	0	0.0		
KGP-IN-1130	EDC Commence Mohilization (Early Accommodation Band)	242 2	2 U/-Mar-18 0 07-Mar-18	2 I-NOVI	οų	0.0		
KGP-IN-1120	Design Review		0 0	05-Jul-18	173	0.0		
KGP-IN-1150	Hazop		0	12-Jul-18	168	0.0		
KGP-IN-1510	Plant Civi's Mobilisation (Site Establishment & Batchplant Setup)		0 27-Sep-18		22	0.0		
KGP-IN-9030	Initial Construction Accommodation at Main Camp (50% Occupancy Available)		0	29-Oct-18	143	0.0		
KGP-IN-9035	Accommodation & Common Camp Buildings Ready for use (100% Occupancy)		0 <u>25 10</u>	14-Jan-19*	134	0.0		• •
KGP-IN-1160	Tark Installation woolisation SMP Contractor Mobilisation		0 20-Jan-19 0 19-Feb-19		94 29	0.0		
KGP-IN-1170	Plant Site Electrical Team Mobilisation		0 24-Mar-19		110	0.0		
KGP-IN-1180	SMP Complete		0	26-Sep-19	41	0.0		
KGP-IN-1190	Electrical Complete		0	26-Sep-19	41	0.0		
KGP-IN-1200	Final Facility Practical Completion		0	05-Oct-19	56	0.0		
KGP-IN-1220	First Gold Pour Commissioning/Derformance Testing Commiste			04-Nov-19 21-Nov-19	5	0.0		
OWNERS		611	5 06-Apr-17	17-Sep-19	46	0.0		
APPROVALS		37(0 06-Apr-17	27-Sep-18	87	0.0		
Internal		0	6 06-Apr-17	13-Jul-17	80	0.0		
KGP-IN-2640	Approval to proceed with Early Works Design. Procurement and Infrastructure Development	5	0 06-Apr-17*	1-00-01	3 0	0.0		
KGP-IN-1530	Full Financial Investment Decision		0 13-Jul-17*		80	0.0	••••	
Environmental, Rec	ulatory & Ministerial	16	1 06-Feb-18	27-Sep-18	87	0.0		
Owners		16	1 06-Feb-18	27-Sep-18	87	0.0		
KGP-IN-2600	In Country Tax Agreements Established		0 06-Feb-18		49	0.0		
KGP-IN-2440 KGP-IN-2490	All Envronmental & building Permis in Place Plantsite Facilities Permits & Licensing In Place		0 07-Sep-18		131	0.0		•
EPC DESIGN INPUT	5		0 22-Nov-17	23-Nov-17	0	0.0		
		:		-			-	
Remaining Leve	el of Effort Critical Remaining Work	Preliminary Baseli	ine Schedi	ule Develo	pment		Date	P3540-000-SCH-001_B (water Initastructure Development) Revision Checked Approved
Actual Work	Milestone Summary		Page 1 of 7				30-Mar-17 T	ulu Kapi Preliminary PEP - IFR AB PH

Start Finish Total Remaining
Particip
Exhlorint Exhlorint Control Contro Control Control
Extend Fact Intel Intel <th< td=""></th<>
EXMANT Field Labor Units ALM
Exhlori I Exhlori I Colin I
Exhloring Fold Ladit Curring Curr
Field Index Units Addition Addite <
Field Iadd Units Main
Real Leber (1) 20/1
Feat Lead Uritis 2011
Evaluation Flat Lake Lutts Lutts <thlutts< th=""> Lutts Lutts <</thlutts<>
End Land Units Ann J A S A A A A A A A A
Evaluation Faul Land Write Zurvert
Foul Land Lund Land Lund <thland< th=""> Land Land Lund</thland<>
Evaluation Feat Laborution Zouty
Evaluation Fail Laborution Zout Zout <thzout< th=""> Zout Zout</thzout<>
Field Land Units ZUV ZUV <thzuv< th=""> ZUV ZUV ZUV</thzuv<>
Field Lador Units ZMN17 O DO DO DI J <</td
Etal Labor Units ZUIV Curve D
Feat Labor Units 2011
Ebail Land Units 2011
Float Land Land <thland< th=""> Land Land <th< td=""></th<></thland<>
Field Lebor Units ZUIT
Flad Labor Units ZUIT
Float Eabor Units ZUIV CUIS CUIS 22-Nov-17 0 00 2 A J J S A J J S
Float Labor Units ZUIV ZUIV ZUIV 22-Nov-17 0 00 0
Float Labor Units ZUIV ZUIV ZUIV 22-Nov-17 0 00 0
Float Labor Units ZUIV ZUIV ZUIV 22-Nov-17 0 00 0
Foat Labor Units 2014 2018 22-Now-17 23-Nov-17 0 0.00 A J J
Foat Labor Units 2011 2013 2014 2015 2014 2015 2014 2014 2016 2014 2014 2016 2014 2016 2014 2016 2016 2014 2016
Float Eabor Units Zurv
Float Labor Units ZUIV ZUIN
Foat Labor Units ZUIV ZUIV ZUIV 22-Nov-17 23-Nov-17 0 0.0 2 2 0 1<
Foat Labor Units ZU18
Foat Labor Units ZUIR
Foat Labor Units 2018 2018 22-Nov-17 0 0.0 0 0 1 <td< td=""></td<>
Ebal Labor Units 2017 2017 2018 2018 2018 2019
Epat Labor Units 2017 2017 2018 2019
Ebal Labor Units 2017 2017 2018
Z2Nov-17 Z3Nov-17 2017 2017 2017 2018 2019
Fbat Labor Units 201/ 201/ 2018 2018 1 2018

Activity ID	Activity Name	Remaining	Start	Finish	Total	Remaining	
		Duration			Float L	-abor Units	2017 2017 2018 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019
KGP-IN-9950	Submit Geotechnical Report Rev0	50	25-Aug-17	13-Sep-17	4	0.0	
534 - Hydrology		111	06-Apr-17	13-Sep-17	e	4946.0	
All Disciplines		111	06-Apr-17	13-Sep-17	ю	4946.0	
KGP-IN-9050	Prepare Hydrobogy Investigation Agreement & Scope	13	06-Apr-17	27-Apr-17	2	0.0	
KGP-IN-9060	Tender Hydrology Testwork	35	28-Apr-17	16-Jun-17	2	0.0	
KGP-IN-9070	Award Hydrology Study Contract	0	29-Jun-17		2	0.0	
KGP-IN-9080	Carry Out Hydrology Testwork & Submit Report RevA	09	30-Jun-17	25-Aug-17	4	4946.0	
KGP-IN-9120	Submit Hydrobgy Report Rev0	20	25-Aug-17	13-Sep-17	4	0.0	
536 - HV Electrical		402	13-Jul-17	18-Feb-19	135	45790.1	
Earthworks		50	11-Nov-17	09-Dec-17	30	2120.0	
Civils		100	09-Dec-17	09-May-18	167	8078.2	
Electrical & Instrum	hentation	402	13-Jul-17	18-Feb-19	135	35591.9	
KEFI Project Develo	oment	303	01-Apr-17	19-Jun-18	361	0.0	
660 - Community		303	01-Apr-17	19-Jun-18	361	0.0	
663 - Land Acquisiti	0	258	01-Apr-17	13-Apr-18	362	0.0	
665 - Housing & Bel	ocation	267	26-Mav-17	19-Jun-18	361	CC	
		177	23-Nov-17	09-Aun-18	324	1096.0	
EPC		171	22 Nov 17	00 0112 10	VCC	1006.0	
		2 5	23-NUV-17	09-Aug-10	524	0.0801	
KGP-IN-4030	PLN-003 - Engineering Plan	22	23-Nov-17	20-Dec-17	30	128.0	
KGP-IN-4040	PLN-004 - Construction Management Plan	50	23-Nov-17	20-Dec-17	30	160.0	
KGP-IN-4060	PLN-006 - Project Quality Management Plan	35	23-Nov-17	18-Jan-18	15	208.0	
KGP-IN-4070	PLN-005 - Project Health and Safety Management Plan	31	30-Nov-17	05-Feb-18	14	160.0	
KGP-IN-4050	PLN-001 - Project Execution Plan	8	23-Nov-17	06-Feb-18	13	280.0	
KGP-IN-4080	PLN-007 - Process Commissioning Plan	20	13-Jul-18	09-Aug-18	327	160.0	
ENGINEERING, SPB	ECIFICATIONS & DRAFTING	252	09-Nov-17	09-Nov-18	259	58970.6	
Engineering Delivera	ables	205	23-Nov-17	19-Sep-18	296	17169.7	
Process		177	23-Nov-17	09-Aug-18	324	3592.0	
Civil/ Structural		102	23-Nov-17	24-Apr-18	88	1200.0	
Mechanical/ Piping		183	23-Nov-17	20-Aug-18	269	4448.0	
Electrical		185	21-Dec-17	19-Sep-18	232	2712.0	
Instrumentation		182	21-Dec-17	13-Sep-18	225	4144.0	
Infrastructure		132	21-Dec-17	05-Jul-18	329	1073.7	
Engineering Datashe	sets/Specifications	139	23-Nov-17	18-Jun-18	256	6166.7	
Drafting		252	09-Nov-17	09-Nov-18	239	35634.3	
110 - Treatment pla	nt General	162	23-Nov-17	19-Jul-18	173	3285.0	
120 - Feed Preparat	tion	129	19-Jan-18	26-Jul-18	304	2769.7	
130 - Milling		171	30-Nov-17	16-Aug-18	289	10025.5	
140 - Feed Screenin	ng / Thickening	130	16-Feb-18	24-Aug-18	294	1321.3	
160 - Leaching (CIL)		125	12-Mar-18	06-Sep-18	253	1914.9	
170 - Elution & Gold	room	170	09-Mar-18	09-Nov-18	235	3670.0	
180 - Tails Handling		139	12-Jan-18	02-Aug-18	304	1490.0	
210 - Reagents		130	23-Feb-18	30-Aug-18	256	1320.0	
220 - Water Service	0	125	16-Feb-18	17-Aug-18	262	1781.5	
230 - Plant Services		120	02-Mar-18	23-Aug-18	155	1115.0	
240 - Air Services		125	02-Mar-18	30-Aug-18	282	473.0	
260 - Electrical Service	vices	166	20-Feb-18	17-Oct-18	203	2968.0	
330 - Water & Sewe	srage	125	16-Feb-18	17-Aug-18	286	1781.5	
350 - Tailings dam		8	07-Mar-18	05-Jul-18	93	0.0	
340 - Power Supply		5/	06-Apr-18	23-Jul-18	232	560.0	
3/0 - Buildings-Plar	11	511 2	10-Feb-18	12 Eab 10	240	290.5	
380 - Permanent Ac	scomodation	3	/ L-/0N-60	12-Feb-18	248	G.UdC	
PROCUREMEN		000	02 Dec 42	01-dac-11	104	23440.0	
Ctondord Ctondord		101 2,66	03-Anr-17	17-San-18	134 208	0.0020	
		167	05-lan-18	05-Sen-18	306	0.04-201	
Site Construction (to	under & award)	167	05lan-18	05-Sen-18	306	0.0	
		Docolin	Cobodul		10000	2	P3540-000-SCH-001 B /Water Infrastructure Development)
Kemaining Leve		y Dasellin	e ochegui	e nevelo	pmemu		Date Revision Checked Approved
Actual Work		Ĩ	age 3 of 7				30-Mar-17 Tutu Kapi Preliminary PEP - IFR AB PH
			,				

2017 2018 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019																																					I				P												P3540-000-SCH-001_B (Water Infrastructure Development)	Date Revision Checked Approved	30-Mar-17 Tulu Kapi Preliminary PEP - IFR AB PH
Labor Units	0.0	0.0	0.0	0.0	0.0	43109.0	10256.0	10256.0	32853.0	720.0	720.0	240.0	240.0	240.0	7800.0	3829.0	960.0	8160.0	3216.0	6440.0	888.0	840.0	43629.0	6832.0	36797.0	2240.0	7800.0	3717.0	2240.0	0.0000	7280.0	2240.0	1200.0	740993.6	1320.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1320.0	453107.0	44703.4	1275.9	1322.6	1365.0	21118.0	2425.0 6103.7	3662.2			
Total Float	30	211	173	178	3 211	3 176	132	3 132	3 176	148	148	29		152	235	3 176	172	136	164	3 137	160	3 95	179	9 137	179	145	3 234	179	203	167	135	144	20	2	9 82	9 82	0	4	54	35	81	56	82	4 00	15	15	0	85	108	0	0 0	, 6	lonment		
Finish	20-Apr-18	23-Aug-16	30-Apr-18	14-Jun-18	23-Aug-16	24-Dec-18	29-Nov-18	29-Nov-18	24-Dec-18	27-Jun-18	27-Jun-18	25-Apr-18	29-Mav-18	27-Jun-18	01-Oct-18	21-Dec-16	25-Oct-18	24-Dec-18	12-Nov-18	09-Nov-16	15-Oct-18	25-Sep-18	09-Mar-19	14-Feb-19	09-Mar-19	27-Aug-18	17-Dec-18	09-Mar-19	29-Nov-18	27 Ion 40	25-Jan-10	26-Jan-19	11-Dec-18	14-Nov-19	15-May-19	15-May-19	24-Apr-18 24-Apr-18	10-Sep-18	21-Feb-15	16-Mar-19	24-Mar-19	23-Oct-18	15-May-19	21-dec-12	05-Oct-10	05-Oct-19	01-Jun-18	25-Jun-18	30-Jul-18	13-Sep-18	31-Oct-18 31-Oct-18	26-Nov-18	ile Deve		
Start	06-Feb-18	19-Jun-17	19-Jun-17	19-Jun-17	07-Jun-18	21-Dec-17	19-Jan-18	19-Jan-18	21-Dec-17	20-Mar-18	20-Mar-18	20-Mar-18	03-Anr-18	17-Mav-18	30-Apr-18	08-Jun-18	09-May-18	08-Jan-18	23-Feb-18	26-Apr-18	06-Jun-18	21-Dec-17	04-Apr-18	19-Jul-18	04-Apr-18	20-Apr-18	23-Jul-18	31-Aug-18	18-Jul-18 04 Apr 10	10 Apr 10	06-Sen-18	23-Oct-18	12-Jun-18	04-Jan-18	24-Jan-18	23-Mar-18	23-Mar-18 23-Mar-18	15-Aug-18	25-Jan-19	06-Feb-19	16-Jan-19	26-Jun-18	19-Apr-19	24-Jan-18	24-Apr-18 24-Apr-18	24-Apr-18	24-Apr-18*	24-Apr-18*	26-Jun-18*	13-May-18	13-Sep-18 13-Sep-18	31-Oct-18*	e Schedi		age 4 of 7
Zemaining Duration	50	298	216	248	55	252	218	218	252	68	68	25	40	30	108	140	119	243	180	140	83	189	235	145	235	06	104	130	94	10/	02	99	129	469	325	285	30	3 6	18	27	46	8	16	108	3/0	365	45	73	40	143	20	30	Preliminary Baselir		E.
Activity Name	tender & award)					FABRICATION						Civil Reo Bar Supply	Milling Area 132 Manufacture Cast in Items Supply	Refining Area 180 Cast in Items Subbly																							Mohilse Plantste Bulk EW Contractor				rentation	actural			M General		Plant Site Clear & Grub	Plantsite Security Fencing	Plantsite Sediment Controls Structures	Bulk Site Earthworks	In-plant Roads Ster Drainava & Cutherts	Treatment Plant General Misc Detailed Earthworks (Car Parks & Hardstands etc)	4 of Effort Critical Remaining Work		
Activity ID	Off Shore Services (tr	VENDOR DATA	Long Lead	F - Mechanical	H - Electrical	MANUFACTURE & F	Long Lead Items	F - Mechanical	Standard	C - Concrete	Civils	KGP-IN-6880	KGP-IN-6890	KGP-IN-6900	D - Structural	E - Platework	Tanks	F - Mechanical	G - Piping	H - Electrical	J - Instrumentation	M - Buildings	TRANSPORT	Long Lead Items	Standard	C - Concrete	D - Structural	E - Platework	Tanks	r - Mechanical	G - Piping H _ Electrical	J - Instrumentation	M - Buildings	CONSTRUCTION	000 - Site Wide	Mobilisation	Earthworks KGP_IN-12850	Civils	Platework	Mechanical	Electrical & Instrum	Buildings & Archite	Mining	Site Establishment	100 - PROCESS PLA	Earthworks	KGP-IN-8610	KGP-IN-8640	KGP-IN-8630	KGP-IN-8680	KGP-IN-8730 KGP-IN-8700	KGP-IN-8660	Remaining Level	Actual Work	Remaining Work

Information 0 0.0.0.1 0.0.0.0 0.0.0.1 0.0.0.1 0.0.0.1 Information 0 0.0.0.1 0.0.0.0.1 0.0.0.0.1 0.0.0.0.1 Information 0 0.0.0.1 0 0.0.0.1 0.0.0.0.1 Information 0 0.0.0.1 0 0.0.0.1 0.0.0.0.1 Information 0 0.0.0.1 0 0.0.0.1 0.0.0.0.1 Information 0 0.0.0.0.1 0 0.0.0.1 0.0.0.0.1 Information 0 0.0.0.0.1 0 0.0.0.0.1 0.0.0.0.1 Information 0<	S 0 N D J F M A M J Jul A S 0 N D J F M A M J J A S 0 N D																																	•																P3540-000-SCH-001_B (Water Infrastructure Development)	Date Revision Checked Approved	0-Mar-17 Tulu Kapi Preliminary PEP - IFR AB AB PH
Top contrarts A force (Contraction) Contraction	V P P W V																																																			
Ingrommer & Feah (Fundion) 10 30,440 60,047 60,047 60,040	7431.0	8605.6	103316.1	97367.1	7961.0	1161.0	6400.0	400.0	62332.1	8605.6	12081.1	14521.7	12254.7	14869.0	3929.0	5428.0	1134.0	3909.0	5949.0	0.066661	2108/.0	79429.0	485.0	1150.0	12629.0	6846.0	6466.0	1812.0	1286.0	3430.0 1234 0	5707.0	2554.0	926.0 17842.0	0.0	443.0	3911.0	1638.0	3140.0	2935.0	660.0	13207.0	6946.0	0010.U	0.000	4196.0	90658.5	6492.5	84166.0	26152.0			
Intervention & A sead (Foundation) (0) (0) (0) Intervention & A sead (Foundation) (0) (0) (0) Intervention & A sead (Foundation) (0) (0) (0) (0) Intervention & A sead (Foundation) (0) (0) (0) (0) (0) Intervention & A sead (Foundation) (0) (0) (0) (0) (0) Intervention & A sead (Foundation) (0) (0) (0) (0) (0) Intervention & A sead (Foundation) (0) (0) (0) (0) (0) Intervention (0) (0) (0)	26	10	0	0	0	0	0	0	7	0	0	Q.	2	с 2	58	, 1	0	0	19	45 25	34	20	e	m d	n m	31.0	31	31	116	<u>n</u> e	n m	31	25 17	97	99	۳ (30	r L	22	30	10		- 08	8	100	26	89	25	29	pment		
$\label{eq:constants} etam f Faurdian $	05-Oct-19*	19-Dec-18	12-Oct-19	12-Oct-19	12-Oct-19	04-Dec-18	14-Jun-19	12-Oct-19	29-May-19	07-Jan-19	10-Feb-19	20-Mar-19	21-Apr-19	29-May-19	03-Jul-19 07-Oct-19	27-Jul-19	26-Sep-19	05-Oct-19	06-Sep-19	01-00F-19	0/-Oct-19 13-Sen-10	01-Jun-19	13-Oct-18	18-Oct-18	28-Mar-19	19-Apr-19	27-May-19	27-May-19	01-Jun-19	17-Anr-19	22-Jun-19	13-Jul-19	20-Aug-19 13-Sep-19		30-Apr-19	22-Jun-19	05-Aug-19	09-Aug-19	22-Aug-19	13-Sep-19	22-Aug-19	08-Sep-19	17-Jun-19	17 Jun 10	31-Mav-19	12-Sep-19	17-Jun-19	12-Sep-19	12-Sep-19	e Develc		
Inyo corrents & Rehab (Faundiator Pornellation) 23 Ping & Stockting Fachy Datated Enthrontsa 23 Ping & Chent 14 Cherevie 24	28-Jul-19*	6-Nov-18	81-Oct-18	31-Oct-18	81-Oct-18	1-Oct-18*	0-Feb-19	4-Jun-19	14-Dec-18	4-Dec-18	1-Dec-18	05-Feb-19	4-Mar-19	16-Apr-19	7-May-19	9-Mav-19	80-Aug-19	22-Aug-19	16-Apr-19	01-Sep-18	23-Apr-19 80-Sen-18	80-Sep-18	80-Sep-18	3-Oct-18	8-Oct-18 9-Feh-19	8-Mar-19	19-Apr-19	19-Apr-19	9-May-19	0-Ividi - 13 8.Mar-10	17-Apr-19	7-May-19	3-Jun-19 4-Feb-19	4-Feb-19	19-Apr-19	6-May-19	05-Jun-19	00-Jun-19	16-Jul-19	29-Aug-19	1-May-19	05-Jul-19	7-Feh-19	21 CD-13	2-Feb-19	27-Sep-18	7-Mar-19	?7-Sep-18	11-Feb-19	Schedul		0 E of 7
Improvements & Reaue (Frankalischen) Finge & Secularing Family Denialed Enthworks Phen - Const. Concrete Then - Const. Concrete Int & Suspended Stab Control & Suspende	80	17 2	237 3	237 3	237 3	39	143	140	118 0	25 0	4	20	4 : -	50	2 5 50 52	4 2	19	31 2	99 97	200 3 747	2 115 2	167 3	15 3	6 1	1	24 2	4	44	326	2 60	78 1	55 2	48 1 147 1	0	13	55 0	0 0	0 C	5 4	18 2	67 2	94 8	85 85	- c 8 £	2 42	242 2	069	242 2	155 0	Baseline		
	improvements & Rehab (Foundation Remediation)					hing & Stockpling Facility Detailed Earthworks	thing Chamber & Walls Backfill (Est)	/ Pad - Client		Concrete	Llift & Suspended Slab	and Lift & Suspended Slab	d Lift & Suspended Slab	th Lift & Suspended Slab									vation	ling	orete base & suructure hanical Plinths & Annon Slahs	nament missions of participations of the second	ding & Classification Area Concrete	2 Mil Feed Concrete	t Silo Civils	rlinn Area Mill Anness Steel	ang maa min needs occo building Structural Steel	12 LLM's, Trestles, Trusses & Take Up Steelwork		Mil Onsite	backers, base plates & Survey	Jp and Pre-Assmbley of Mill Components	g Area Mechanical Equipment Installation	22 Area Mechanical Equipment Installation 내 SAG Mill	ull main lubrication units and tubing	Sio Pkg & Hoist Installation		E	ic kanime		in Estimate TBC)		imate TBC)			rt Critical Remaining Work	Milestone	

2017 2018 2018 2019 2019 2019																																																						P3540-000-SCH-001 B (Water Infrastructure Development)	Date Revision Checked Approved	30-Mar-17 Tulu Kapi Preliminary PEP - IFR AB PH	
Remaining Labor Units	3069.0	1012.0	5310.0	3033.0	2872.0	10856.0	19253.0	0.020.0	20042.U	12560	3278.0	02/0.0 1723 0	3901.0	556.0	2142 0	198.0	3448.0	16017.0	6299.0	2969.0	4770.0	1979.0	4003.0	2310.0	1693.0	5662.0	3647.0	2015.0	204749.0	0.1602	12033.0	0.10001	0.443.0 1220 0	1330.0	8812.2 518 0	0.00 1148 0	7146.2	79563.0	69734.0	4293.0	5536.0	10894.0	2596.0	3111.0	0.11.0 AR76.0	61240 D	1218.0	9302.0	22270.0	141.0	138.0	2989.0	6249.0	+	1		
Float	9 28	9 37	9 37	9 56	9 56	28	38	1 30) - C	24	5 5		6 1 0 9	, -	. 99	78	38	59	38	9 78	9 24	9 84	9 41	39	41	43	9 43	67	43	208	ACZ S	17	102	3	C7 09		9 25	44	111	9 124	9 44	150	153	164	δ 150	20	128	131	122	163	141	101	9 63	lonmen	2		
Finish	12-Sep-19	02-Sep-19	02-Sep-19	05-Aug-19	05-Aug-19	01-Aug-19	09-Sep-19	20-Sep-1	21-dac-02	08-Sen-16	24-Aun-16		10-Jul-10	21-Sen-19	11-11-10	27-Jun-19	05-Sep-1	05-Aug-19	18-Jun-19	27-Jun-19	05-Aug-19	30-Jun-18	24-Sep-19	30-Aug-19	24-Sep-19	02-Sep-19	02-Sep-1	13-Jun-19	22-Sep-19	20-Jan-12	ar-von-ur	28 Aug 10	si -gun-oz		20-Sep-18	17-Mav-10	20-Sep-19	31-Aug-19	07-May-19	03-May-19	31-Aug-19	19-Apr-19	16-Apr-19	01-Apr-19	14-NoV-18 10-Anr-16	22-Sen-16	05-Mav-19	01-Mav-19	14-Mav-19	10-Mar-19	10-Apr-19	04-Feb-19	28-May-19	ule Deve			
Start	01-Feb-19	17-Jun-19	10-May-19	10-May-19	10-May-19	19-Feb-19	13-Dec-18	76 May 10	21 Oct 10	07-Feb-10	31-Oct-18	01-000-10 03- Ian-10	03-Jall-19 07-Feh-19	15-Aun-19	07-Feh-19	01-Apr-19	11-Jun-19	03-Jan-19	20-Mar-19	07-Feb-19	18-Apr-19	03-Jan-19	23-May-19	23-May-19	15-Jun-19	14-Oct-18	07-Jan-19	14-Oct-18	01-Jun-18	04-JUE-18	01-Jun-18	26 Nov 18	07 Eah 10	07-FED-19	20-Sep-18	97_San_18	20-Sep-18	06-Sep-18	06-Sep-18	22-Feb-19	11-Apr-19	27-Sep-18	07-Nov-18	25-Nov-18	2/-Sep-18 10- Ian-10	27-Sen-18	25-Jan-19	27-Sep-18	02-Nov-18	19-Dec-18	19-Dec-18	15-Nov-18	16-Feb-19	e Schedi		age 6 of 7	
Remaining Duration	155	52	62	60	60	113	184	241	01.2	146	2 2	147	1 4	<u> </u>	105	<u>3</u> 53	61	145	09	8	72	120	87	20	72	222	16	165	329	143	113	188	8	8		158 J	251	246	163	46	86	140	110	88	\$ 8	247	99	146	129	8	75	53	68	Baselin		ď.	
																																																						Preliminary			
Activity Name				ation		elting		AN I SERVICES		Ganara											E.	pud				ses	ss General	ation	RE	seneral	ol & Collection Structures	100	Piccosol	& Lisposa		Ruhetation	bution		sility			in & Security	tration Building		arenouse		Allowance TBC)		/ Buildings	Change House, Meals				of Effort Critical Remaining Work	Milestone	Summarv	
Activity ID	171 - Carbon Recovery		173 - Elution	174 - Carbon Regenera	176 - Electrowinning	177 - Goldroom & Sme	180 - Tails Handling	200 - KEAGEN IS & PL	210 - Keagents	220 - Water Services	200 - Raw Water		223 - FIOUESS WALEI 	225 - Gland Water	226 - Cooling Water	227 - Treated Water		230 - Plant Services	231 - Piperacks	232 - Water Treatment	233 - Sewage Treatmen	234 - Process Water Po	240 - Air Services	241 - Compressed Air	242 - Blower Air	260 - Electrical Servic	261 - Electrical Service	263 - Main Plant Subst	300 - INFRASTRUCTU	310 - Infrastructure G	320 - Sediment Contro	330 - Water & Sewera	331 - Kaw Water Suppr	333 - Water Heatment	340 - Power Supply	241 - Mallis Fower 242 - HV Switchvard / S	344 - Site Power Distrib	350 - Tailings Dam	351 - Tails Storage Fac	352 - Tailings Pipeline	353 - Decant Return	360 - Buildings - Admi	361 - General Adminis	362 - First Aid Clinic	363 - Main Entrance Ga	270 - Plant Buildinge	371 - Plant Offices (No	372 - Plant Workshop	373 - Mine Warehouse	374 - Plant Ablutions, 0	375 - Control Room	376 - MCC Buildings	377 - Laboratory	Remaining Level of	Actual Work	Remaining Work	D

																																				•					
2017 AIMIJIJIAISIO																																									
t Labor Units	9 18933.0	3 19474.8 0 1337.0	3300.8	4 1667.0	9 13170.0	13791.0	3 0.0	0.0	11817.0	3 1500.0	4 7472.0	3 2845.0	3 1974.0	0 2048.0	0.020.0	128.0	0.08 0.0	0 112.0	0.96.0	0.96.0	200.0	80.0	128.0	4 568.0	- A 0.0	1/2.U	56.0 64.0		0.04 0.00	80.0	32.0	2 72.0	336.0	0.88.0	4 72.0	4 80.0	1 48.0	9 48.0	0 224.0	224.0	0 112.0
Floe	22-Sep-19 2.	21-Jan-19 21	18-Dec-18 89	03-Jan-19 224	14-Jan-19 7	14-Nov-19	24-Aug-19 6.	14-Nov-19	28-Aug-19	28-Aug-19	28-Feb-19 10	28-Aug-19	13-Apr-19 120	21-Nov-19	08-Nov-19	16-Oct-19	19-Oct-19	21-Oct-19	29-Oct-19	26-Oct-19	30-Oct-19	02-Nov-19	08-Nov-19	15-Oct-19 1	09-Oct-19 1	10-OCF-19 1	15-Uct-19 1.	10-Cep-13 2	13-Sen-10	03-Oct-19 2	24-Sep-19	28-Sep-19 21	30-Sep-19 24	02-Jul-19 61	30-Sep-19 24	22-Jul-19 7	25-Sep-19 3	09-Aug-19 5.	21-Nov-19	21-Nov-19	21-Nov-19 (
	25-Jan-19	22-Jul-18 22-Jul-18	22-34F 10	02-Aug-18	22-Jul-18	04-Jan-18	04-Jan-18	19-Feb-19	23-Oct-18	11-Jul-19	23-Oct-18	14-Jan-19	24-Nov-18	18-Jun-19	18-Jun-19	05-Oct-19	03-Oct-19	08-Sep-19	18-Jun-19	24-Jul-19	12-Sep-19	01-Aug-19	12-Sep-19	19-Jul-19	28-Sep-19	03-Oct-19	03-Oct-19	05-San-10	08-Sen-19	20-Sen-19	21-Sep-19	24-Sep-19	27-Jun-19	27-Jun-19	02-Sep-19	17-Jul-19	20-Sep-19	05-Aug-19	03-Nov-19	03-Nov-19	08-Nov-19
Duration	165	122	2] []	106	122	469	411	186	213	34	88	157	95	112	102	00	12	29	95	99	33	8	40	00 00	io u	0 0	20 ž	T C	o u) «C	0 0	. m	99	m	19	e	m	2 Q	41	41 4	4 4 5
	378 - Reagents Storage	380 - Permanent Accomodation / Main Camp 381 - Environ & Scontinu	au 1 Finalig a cocurry 384 - Villana Sarvices	385 - Electrical & Communications	386 - Accomodation	400 - MINE ESTABLISHMENT	410 - Mining General	420 - Mine Establishment	450 - Mine Facilities	451 - Mine Facilities General	453 - HVM Workshop	454 - Washdown Facility	460 - Mine Mobile Equipment - HME	COMMISSIONING	100 - PROCESS PLANT	Primary Crushing	Surge Bin	Milling and Classification	Screening & Thickening	CIL	Desorption	Gold room	Carbon Regeneration	200 - REAGENTS & PLANT SERVICES	Reagents	Lime	Oxygen	Filter under	FIFE WALEF Deur unster dieterkuntion	naw water upstribution Process Water	Gland Water	Plant air	300 - INFRASTRUCTURE	HV Substation	LV switch rooms	PCS System	Decant Return	Sewage Handling	PROCESS COMMISSIONING	Process V/Cn IN 4 70000 Diana Discoss Commissioning	KGP-IN-12830 Plant Process Commissioning KGP-IN-12840 Performance Testing

Approved PH

 P3540-000-SCH-001_B (Water Infrastructure Development)

 Date
 Revision
 Checked

 30-Mar-17
 Tulu Kapi Preliminary PEP - IFR
 AB

Preliminary Baseline Schedule Development Page 7 of 7

Critical Remaining Work
 Milestone
 Summary

Actual Work